Algorithms for External Sorting
19.2 Algorithms for External Sorting
Sorting is one of the primary algorithms used in query processing. For example, whenever an SQL query specifies an ORDER BY -clause, the query result must be sorted. Sorting is also a key component in sort-merge algorithms used for JOIN and other operations (such as UNION and INTERSECTION ), and in duplicate elimination
19.2 Algorithms for External Sorting 683
option in the SELECT clause). We will discuss one of these algorithms in this sec- tion. Note that sorting of a particular file may be avoided if an appropriate index— such as a primary or clustering index (see Chapter 18)—exists on the desired file attribute to allow ordered access to the records of the file.
External sorting refers to sorting algorithms that are suitable for large files of records stored on disk that do not fit entirely in main memory, such as most data-
base files. 3 The typical external sorting algorithm uses a sort-merge strategy, which starts by sorting small subfiles—called runs—of the main file and then merges the sorted runs, creating larger sorted subfiles that are merged in turn. The sort-merge algorithm, like other database algorithms, requires buffer space in main memory, where the actual sorting and merging of the runs is performed. The basic algorithm, outlined in Figure 19.2, consists of two phases: the sorting phase and the merging phase. The buffer space in main memory is part of the DBMS cache—an area in the computer’s main memory that is controlled by the DBMS. The buffer space is divided into individual buffers, where each buffer is the same size in bytes as the size of one disk block. Thus, one buffer can hold the contents of exactly one disk block.
In the sorting phase, runs (portions or pieces) of the file that can fit in the available buffer space are read into main memory, sorted using an internal sorting algorithm, and written back to disk as temporary sorted subfiles (or runs). The size of each run and the number of initial runs (n R ) are dictated by the number of file blocks (b)
and the available buffer space (n B ) . For example, if the number of available main
memory buffers n B = 5 disk blocks and the size of the file b = 1024 disk blocks, then n R = (b/n B ) or 205 initial runs each of size 5 blocks (except the last run which will have only 4 blocks). Hence, after the sorting phase, 205 sorted runs (or 205 sorted subfiles of the original file) are stored as temporary subfiles on disk.
In the merging phase, the sorted runs are merged during one or more merge passes . Each merge pass can have one or more merge steps. The degree of merging (d M ) is the number of sorted subfiles that can be merged in each merge step. During each merge step, one buffer block is needed to hold one disk block from each of the sorted subfiles being merged, and one additional buffer is needed for containing one disk block of the merge result, which will produce a larger sorted file that is the
result of merging several smaller sorted subfiles. Hence, d M is the smaller of (n B − 1) and n R , and the number of merge passes is (log dM (n R )). In our example where n B =
5, d M = 4 (four-way merging), so the 205 initial sorted runs would be merged 4 at a time in each step into 52 larger sorted subfiles at the end of the first merge pass. These 52 sorted files are then merged 4 at a time into 13 sorted files, which are then merged into 4 sorted files, and then finally into 1 fully sorted file, which means that four passes are needed.
3 Internal sorting algorithms are suitable for sorting data structures, such as tables and lists, that can fit entirely in main memory. These algorithms are described in detail in data structures and algorithms
books, and include techniques such as quick sort, heap sort, bubble sort, and many others. We do not
684 Chapter 19 Algorithms for Query Processing and Optimization
set i← 1; j←b ;
{size of the file in blocks}
k←n B ;
{size of buffer in blocks}
m← ( j/k ) ; {Sorting Phase}
while (i ≤ m ) do {
read next k blocks of the file into the buffer or if there are less than k blocks remaining, then read in the remaining blocks; sort the records in the buffer and write as a temporary subfile; i←i + 1;
} {Merging Phase: merge subfiles until only 1 remains}
set i← 1; p← log k –1 m {p is the number of passes for the merging phase} j←m ;
while (i ≤ p ) do {
n← 1; q← ( j/(k–1 ) ; {number of subfiles to write in this pass} while (n ≤ q ) do {
read next k–1 subfiles or remaining subfiles (from previous pass) one block at a time; merge and write as new subfile one block at a time; n←n + 1;
} j←q ; i←i + 1;
Figure 19.2
Outline of the sort-merge algorithm for external sorting.
The performance of the sort-merge algorithm can be measured in the number of disk block reads and writes (between the disk and main memory) before the sorting of the whole file is completed. The following formula approximates this cost:
(2 * b) + (2 * b * (log dM n R )) The first term (2 * b) represents the number of block accesses for the sorting phase,
since each file block is accessed twice: once for reading into a main memory buffer and once for writing the sorted records back to disk into one of the sorted subfiles. The second term represents the number of block accesses for the merging phase. During each merge pass, a number of disk blocks approximately equal to the origi- nal file blocks b is read and written. Since the number of merge passes is (log dM n R ),
19.3 Algorithms for SELECT and JOIN Operations 685
The minimum number of main memory buffers needed is n B = 3, which gives a d M of 2 and an n R of (b/3). The minimum d M of 2 gives the worst-case performance of the algorithm, which is:
(2 * b) + (2 * (b * (log 2 n R ))).
The following sections discuss the various algorithms for the operations of the rela- tional algebra (see Chapter 6).
Parts
» Fundamentals_of_Database_Systems,_6th_Edition
» Characteristics of the Database Approach
» Advantages of Using the DBMS Approach
» A Brief History of Database Applications
» Schemas, Instances, and Database State
» The Three-Schema Architecture
» The Database System Environment
» Centralized and Client/Server Architectures for DBMSs
» Classification of Database Management Systems
» Domains, Attributes, Tuples, and Relations
» Key Constraints and Constraints on NULL Values
» Relational Databases and Relational Database Schemas
» Integrity, Referential Integrity, and Foreign Keys
» Update Operations, Transactions, and Dealing with Constraint Violations
» SQL Data Definition and Data Types
» Specifying Constraints in SQL
» The SELECT-FROM-WHERE Structure of Basic SQL Queries
» Ambiguous Attribute Names, Aliasing, Renaming, and Tuple Variables
» Substring Pattern Matching and Arithmetic Operators
» INSERT, DELETE, and UPDATE Statements in SQL
» Comparisons Involving NULL and Three-Valued Logic
» Nested Queries, Tuples, and Set/Multiset Comparisons
» The EXISTS and UNIQUE Functions in SQL
» Joined Tables in SQL and Outer Joins
» Grouping: The GROUP BY and HAVING Clauses
» Discussion and Summary of SQL Queries
» Specifying General Constraints as Assertions in SQL
» Introduction to Triggers in SQL
» Specification of Views in SQL
» View Implementation, View Update, and Inline Views
» Schema Change Statements in SQL
» Sequences of Operations and the RENAME Operation
» The UNION, INTERSECTION, and MINUS Operations
» The CARTESIAN PRODUCT (CROSS PRODUCT) Operation
» Variations of JOIN: The EQUIJOIN and NATURAL JOIN
» Additional Relational Operations
» Examples of Queries in Relational Algebra
» The Tuple Relational Calculus
» The Domain Relational Calculus
» Using High-Level Conceptual Data Models
» Entity Types, Entity Sets, Keys, and Value Sets
» Relationship Types, Relationship Sets, Roles, and Structural Constraints
» ER Diagrams, Naming Conventions, and Design Issues
» Example of Other Notation: UML Class Diagrams
» Relationship Types of Degree Higher than Two
» Subclasses, Superclasses, and Inheritance
» Constraints on Specialization and Generalization
» Specialization and Generalization Hierarchies
» Modeling of UNION Types Using Categories
» A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions
» Data Abstraction, Knowledge Representation, and Ontology Concepts
» ER-to-Relational Mapping Algorithm
» Discussion and Summary of Mapping for ER Model Constructs
» Mapping EER Model Constructs
» The Role of Information Systems
» The Database Design and Implementation Process
» Use of UML Diagrams as an Aid to Database Design Specification 6
» Rational Rose: A UML-Based Design Tool
» Automated Database Design Tools
» Introduction to Object-Oriented Concepts and Features
» Object Identity, and Objects versus Literals
» Complex Type Structures for Objects and Literals
» Encapsulation of Operations and Persistence of Objects
» Type Hierarchies and Inheritance
» Other Object-Oriented Concepts
» Object-Relational Features: Object Database Extensions to SQL
» Overview of the Object Model of ODMG
» Built-in Interfaces and Classes in the Object Model
» Atomic (User-Defined) Objects
» Extents, Keys, and Factory Objects
» The Object Definition Language ODL
» Differences between Conceptual Design of ODB and RDB
» Mapping an EER Schema to an ODB Schema
» Query Results and Path Expressions
» Overview of the C++ Language Binding in the ODMG Standard
» Structured, Semistructured, and Unstructured Data
» XML Hierarchical (Tree) Data Model
» Well-Formed and Valid XML Documents and XML DTD
» XPath: Specifying Path Expressions in XML
» XQuery: Specifying Queries in XML
» Extracting XML Documents from
» Database Programming: Techniques
» Retrieving Single Tuples with Embedded SQL
» Retrieving Multiple Tuples with Embedded SQL Using Cursors
» Specifying Queries at Runtime Using Dynamic SQL
» SQLJ: Embedding SQL Commands in Java
» Retrieving Multiple Tuples in SQLJ Using Iterators
» Database Programming with SQL/CLI Using C
» JDBC: SQL Function Calls for Java Programming
» Database Stored Procedures and SQL/PSM
» PHP Variables, Data Types, and Programming Constructs
» Overview of PHP Database Programming
» Imparting Clear Semantics to Attributes in Relations
» Redundant Information in Tuples and Update Anomalies
» Normal Forms Based on Primary Keys
» General Definitions of Second and Third Normal Forms
» Multivalued Dependency and Fourth Normal Form
» Join Dependencies and Fifth Normal Form
» Inference Rules for Functional Dependencies
» Minimal Sets of Functional Dependencies
» Properties of Relational Decompositions
» Dependency-Preserving Decomposition
» Dependency-Preserving and Nonadditive (Lossless) Join Decomposition into 3NF Schemas
» Problems with NULL Values and Dangling Tuples
» Discussion of Normalization Algorithms and Alternative Relational Designs
» Further Discussion of Multivalued Dependencies and 4NF
» Other Dependencies and Normal Forms
» Memory Hierarchies and Storage Devices
» Hardware Description of Disk Devices
» Magnetic Tape Storage Devices
» Placing File Records on Disk
» Files of Unordered Records (Heap Files)
» Files of Ordered Records (Sorted Files)
» External Hashing for Disk Files
» Hashing Techniques That Allow Dynamic File Expansion
» Other Primary File Organizations
» Parallelizing Disk Access Using RAID Technology
» Types of Single-Level Ordered Indexes
» Some General Issues Concerning Indexing
» Algorithms for External Sorting
» Implementing the SELECT Operation
» Implementing the JOIN Operation
» Algorithms for PROJECT and Set
» Notation for Query Trees and Query Graphs
» Heuristic Optimization of Query Trees
» Catalog Information Used in Cost Functions
» Examples of Cost Functions for SELECT
» Examples of Cost Functions for JOIN
» Example to Illustrate Cost-Based Query Optimization
» Factors That Influence Physical Database Design
» Physical Database Design Decisions
» An Overview of Database Tuning in Relational Systems
» Transactions, Database Items, Read and Write Operations, and DBMS Buffers
» Why Concurrency Control Is Needed
» Transaction and System Concepts
» Desirable Properties of Transactions
» Serial, Nonserial, and Conflict-Serializable Schedules
» Testing for Conflict Serializability of a Schedule
» How Serializability Is Used for Concurrency Control
» View Equivalence and View Serializability
» Types of Locks and System Lock Tables
» Guaranteeing Serializability by Two-Phase Locking
» Dealing with Deadlock and Starvation
» Concurrency Control Based on Timestamp Ordering
» Multiversion Concurrency Control Techniques
» Validation (Optimistic) Concurrency
» Granularity of Data Items and Multiple Granularity Locking
» Using Locks for Concurrency Control in Indexes
» Other Concurrency Control Issues
» Recovery Outline and Categorization of Recovery Algorithms
» Caching (Buffering) of Disk Blocks
» Write-Ahead Logging, Steal/No-Steal, and Force/No-Force
» Transaction Rollback and Cascading Rollback
» NO-UNDO/REDO Recovery Based on Deferred Update
» Recovery Techniques Based on Immediate Update
» The ARIES Recovery Algorithm
» Recovery in Multidatabase Systems
» Introduction to Database Security Issues 1
» Discretionary Access Control Based on Granting and Revoking Privileges
» Mandatory Access Control and Role-Based Access Control for Multilevel Security
» Introduction to Statistical Database Security
» Introduction to Flow Control
» Encryption and Public Key Infrastructures
» Challenges of Database Security
» Distributed Database Concepts 1
» Types of Distributed Database Systems
» Distributed Database Architectures
» Data Replication and Allocation
» Example of Fragmentation, Allocation, and Replication
» Query Processing and Optimization in Distributed Databases
» Overview of Transaction Management in Distributed Databases
» Overview of Concurrency Control and Recovery in Distributed Databases
» Current Trends in Distributed Databases
» Distributed Databases in Oracle 13
» Generalized Model for Active Databases and Oracle Triggers
» Design and Implementation Issues for Active Databases
» Examples of Statement-Level Active Rules
» Time Representation, Calendars, and Time Dimensions
» Incorporating Time in Relational Databases Using Tuple Versioning
» Incorporating Time in Object-Oriented Databases Using Attribute Versioning
» Temporal Querying Constructs and the TSQL2 Language
» Spatial Database Concepts 24
» Multimedia Database Concepts
» Clausal Form and Horn Clauses
» Datalog Programs and Their Safety
» Evaluation of Nonrecursive Datalog Queries
» Introduction to Information Retrieval
» Types of Queries in IR Systems
» Evaluation Measures of Search Relevance
» Web Analysis and Its Relationship to Information Retrieval
» Analyzing the Link Structure of Web Pages
» Approaches to Web Content Analysis
» Trends in Information Retrieval
» Data Mining as a Part of the Knowledge
» Goals of Data Mining and Knowledge Discovery
» Types of Knowledge Discovered during Data Mining
» Market-Basket Model, Support, and Confidence
» Frequent-Pattern (FP) Tree and FP-Growth Algorithm
» Other Types of Association Rules
» Approaches to Other Data Mining Problems
» Commercial Data Mining Tools
» Data Modeling for Data Warehouses
» Difficulties of Implementing Data Warehouses
» Grouping, Aggregation, and Database Modification in QBE
Show more