The midpoint Riemann sum will be larger than ∫ a () f x dx .
21. The midpoint Riemann sum will be larger than ∫ a () f x dx .
If f is concave down, then f () c < 0 for any c ∈ () ab , . Thus, the error E n =
f ′′ () c < . Since the error 0
24 n 2 is negative, then the Riemann sum must be greater than the integral.
22. b The Trapezoidal Rule approximation will be smaller than ∫ f x dx
a () .
If f is concave down, then f ′′ () c < 0 for any c ∈ () ab , . Thus, the error E =−
2 f ′′ () c > . Since the 12 0 n
error is positive, then the Trapezoidal Rule approximation must be less than the integral.
[ a k 1 – (– ) k a + 1 = 1 a k + ∫ 1 ⎢ ] [ – a k + 1 ]0 – = a
A corresponding argument works for all n.
24. a. T ≈ 48.9414; fx ′ () = 4 x 3 [4(3) – 4(1) ](0.25) 3 3 2
12 The correct value is 48.4 .
Instructor’s Resource Manual
Section 4.6 287
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
[cos – cos 0] π π ()
The correct value is 2.
25. The integrand is increasing and concave down. By problems 19-22, LRS < TRAP < MRS < RRS.
26. The integrand is increasing and concave up. By problems 19-22, LRS < MRS < TRAP < RRS
27. A ≈ [75 2 71 2 60 2 45 2 45 2 52 2 57 2 60 59] +⋅+⋅ +⋅ +⋅ +⋅ +⋅ +⋅ + = 4570 ft 2
28. A ≈ [23 4 24 2 23 4 21 2 18 4 15 2 12 4 11 2 10 4 8 0] +⋅ +⋅ +⋅+⋅+⋅+⋅+⋅+⋅+⋅+ = 465 ft 2
V =⋅≈ A 6 2790 ft 3
29. A ≈ [0 4 7 2 12 4 18 2 20 4 20 2 17 4 10 0] +⋅+⋅+⋅+⋅ +⋅ +⋅+⋅+ = 2120 ft 2
4 mi/h = 21,120 ft/h
(2120)(21,120)(24) = 1,074,585,600 ft 3
30. Using a right-Riemann sum,
4. False:
fx () = x 2 + 2 x + 1 and
Distance = ∫ v t dt () ≈ ∑ vt () Δ t
gx () = x + 7 x − 5 are a
i = 1 counterexample.
The two sides will in general differ by 852
60 5. False:
a constant term.
At any given height, speed on the downward trip is the negative of
31. Using a right-Riemann sum,
speed on the upward.
Water Usage = ∫ 0 () F t dt
148) n − 1 12(71 68 a n − 2 + a n + a n − 1 ∑ i i = 1
∑ (2 i −= 1) 2 ∑∑ i − 1
4.7 Chapter Review
Concepts Test
∑ ( a i 2 + 1) = a ∑ 2 i + 2 ∑ a i + ∑ 1
1. True:
Theorem 4.3.D
9. True:
2. True:
Obtained by integrating both sides of
the Product Rule
10. False:
f must also be continuous except at a
3. True:
If Fx () = () f x dx f x , () is a
finite number of points on [a, b ]. ∫
derivative of F(x).
11. True:
The area of a vertical line segment is 0.
Section 4.7 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
12. False:
1 x dx is a counterexample.
28. False:
fx () = x ∫ 3 − 1 is a counterexample.
13. False:
A counterexample is
29. False:
fx () = x is a counterexample.
fx () =⎨
⎧ 0, x ≠ 0
⎩ 1, x = 0 30. True:
All rectangles have height 4,
1 2 regardless of x i .
with ∫ ⎡ ⎣ fx ⎤ dx = − 1 () ⎦ 0 .
If b fx () is continuous, then
31. True:
Fb () − Fa () = ∫ ′
a () F x dx
[ ( )] fx 2 ≥ 0 , and if [ ( )] fx 2 is greater
a () G x dx = Gb () − Ga () than 0 on [a, b], the integral will be also.
32. False:
= − f x dx
a () f x dx 2 ∫ 0 () because f
is even.
15. True:
sin x + cos x has period 2 π , so
33. False:
zt () = t 2 is a counterexample.
x +π ∫ 2
(sin x + cos ) x x dx b
34. False:
() f x dx = Fb () − F (0)
is independent of x .
Odd-exponent terms cancel x → a x → a themselves out over the interval, since
lim [ fx () + gx () ] they are odd.
= lim fx () + lim ( ) gx when all the
x → a x a 36. False:
= 0, b = 1, f(x) = –1, g(x) = 0 is a
counterexample.
limits exist.
37. False:
a = 0, b = 1, f(x) = –1, g(x) = 0 is a
17. True:
sin 13 x is an odd function.
counterexample.
18. True:
Theorem 4.2.B
The statement is not true if c > d.
≤ a 1 + a 2 + a 3 ++ a n because any negative values of a i make the
20. False:
0 left side smaller than the right side.
2 dt ⎥ =
39. True:
Note that − fx () ≤ fx () ≤ fx ()
21. True:
Both sides equal 4.
and use Theorem 4.3.B.
22. True:
Both sides equal 4.
40. True:
Definition of Definite Integral
23. True:
If f is odd, then the accumulation
41. True:
Definition of Definite Integral
function x Fx () = ∫
0 () f t dt is even,
and so is () + C for any C.
42. False: Consider
fx () = x 2 is a counterexample.
43. True.
Right Riemann sum always bigger.
44. True. Midpoint of x coordinate is midpoint
25. False:
fx () = x 2 is a counterexample.
of y coordinate.
45. False.
Trapeziod rule overestimates integral.
26. False:
fx () = x 2 is a counterexample.
46. True.
Parabolic Rule gives exact value for
27. False:
fx () = x 2 , v(x) = 2x + 1 is a
quadratic and cubic functions.
counterexample.
Instructor’s Resource Manual
Section 4.7 289
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
Sample Test Problems
12. u = 2 y 3 + 3 y 2 + 6, y du = (6 y 2 + 6 y + 6) dy
1 5 ( y 2 ++ y 1
1. x − x + 2 x
dy = ∫ u du
− 9 cos1 i = 1 2 4
7. u = tan(3 x 2
u 3 + C 15. ∫ 0 (2 − x + 1) dx
⎤ = 1 3 π+ 2 = ∫ ( x +− 54 x + 1 ) dx
1 25 u − 1/ 2
9 du = ⎡ 1/ 2 ⎤ 4 = 2 ⎣ u ⎦ 1 9 1 5 12 5
16. ∫ 3 x 2 x 3 − dx = ⎡ 4 ( x 3 − 4) 3/2 ⎤
3 17. ∫ 2 ⎜ 5 − 2 ⎟ dx = ⎢ 5 x ⎣ + x ⎥ =
⎣ 9 y 3 y ⎦ ⎥ 2 27 n
18. (3 i − 3 i − ∑ 1 )
11. ∫ ( x + 1) sin ( x + 2 x + 3 ) dx
=−+ (3 1) (3 2 −+ 3) (3 3 − 3) 2 ++ (3 n − 3 n − 1 ) = 1
sin ∫ 2 ( x + 2 x + 32 ) ( x + 2 ) dx
2 ∫ sin u du
19. ∑ (6 i 2 − 8) i = 6 ∑ 2 i − 8 ∑ i
=− cos ( x + 2 x ++ 3 C
Section 4.7 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
20. a. ++=
e. ∫ f ( − x dx ) =−
0 ∫ () f x dx =− 2 0
21. a. ∑
b. ∑ nx 4 1 1
∫ x − 1 dx = (1)(1) +
∑ ⎢− 16 ⎜⎟⎜⎟ ⎥ x dx =++= 1236
lim
⎝⎠⎝⎠ n ⎥ ⎦ n ⎧ ⎪ n ⎡ 48 27
= lim
∑ ⎢ n 3 ⎥ ⎬ c.
∫ ( x − x ) dx = ∫ x dx − ∫ x dx
n →∞ n ∑ 3 ∑
27 ⎡ nn ( + 1)(2 n + 1) ⎫
⎥ ⎬ 25. a. ∫ − 2 () f x dx = 2 ∫ f x dx =−=− 0 () 2( 4) 8 n →∞
lim 48 ⎨ 3 ⎢
= lim 48 ⎨ − ⎢ 2 ++ 2 ⎥ ⎬ b. Since fx () ≤ 0 , fx () =− fx () and
n →∞ ⎩
∫ − () f x dx =− 2 ∫ − 2 () f x dx
() f x dx 2 ∫ 0 () ∫ 8
c. ∫ () g x dx = 0
b. ∫ () f x dx =− ∫ () f x dx =− 1 0 4
d. ∫ − 2 [ fx () + f ( − x dx ) ]
3 ∫ 0 () 3(2) 6 = 2 ∫ () f x dx + 2 f x dx
d. ∫ 0 [ 2()3() gx − f x dx ]
2 ∫ gx ()3 − ∫ () f x dx 0 0
Instructor’s Resource Manual
Section 4.7 291
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
2 1 x e. ∫ 2()3()
20 ∫ f z dz x fx x
g x dx + 3 ∫ () f x dx
0 0 x d. Gx ′ () = () f t dt
f. gx ∫ () g x dx =− ∫ () g x dx =− 5 e. Gx () = du = [ ( )] gu ()
gx ()
− 2 0 ∫ 0 du
26. ∫ 3 + − 100 ( x sin 5 x dx ) = 0 Gx ′ () = ggxgx ′ ( ( )) ( ) ′
1 2 2 f. Gx () = ∫ f () − t dt = fu ( )( − du )
27. ∫ x dx = c −+
30. a. ∫ 0 x dx = ⎡ x 3/2 ⎤ =
c =− 7 ≈− 2.65 4 2 4 16
28. a. Gx ′ () =
x 2 + 1 b. 32 ∫ 3 1 x dx = ⎡⎤
31. fx () = ∫ x dt = ∫ dt − ∫ dt
32. Left Riemann Sum: ∫
4 dx ≈ 0.125[ ( fx 0 ) + fx () 1 +…+ fx ( 7 )] 0.2319 ≈ 1 1 + x
Right Riemann Sum: ∫
4 dx ≈ 0.125[ ( ) fx 1 + fx ( 2 ) +…+ fx ( )] 0.1767 ≈ 1 1 8 + x
Midpoint Riemann Sum: ∫
dx ≈ 0.125[ ( fx 0.5 ) + fx ( 1.5 ) +…+ fx ( 7.5 )] 0.2026 ≈
dx ≈
[( fx 0 )2() + fx 1 +…+ 2( fx 7 ) + fx ( )] 0.2043
4 (5 c − 3) (4)(2 ) (5)(2 ) 3 ( − )
f ''( ) c =
Remark: A plot of '' f shows that in fact f '' () c < 1.5 , so E n < 0.002 .
Section 4.7 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
dx ≈
[( fx 0 )4()2( + fx 1 + fx 2 ) +…+ 4( fx 7 ) + fx ( )] 1.1050 8 ≈
0 12 + x
f () 4 () c =
( 12 + c )
E n =−
⋅ f () c ≤
c 4 (5 c − 3) (4)(2 ) (5)(2 ) 3 ( + )
≈ 138,333 so n > 138,333 ≈ 371.9 Round up to n = 372 .
Remark: A plot of '' f shows that in fact f '' () c < 1.5 which leads to n = 36 .
36. f () () c =
( 12 + c )
4 4 384 n ⋅ > ≈ 21,845,333 , so n ≈ 68.4 . Round up to n = 69 .
37. The integrand is decreasing and concave up. Therefore, we get: Midpoint Rule, Trapezoidal rule, Left Riemann Sum
Review and Preview Problems
6. ( x +− h x 2 ) + ( ( x + h ) 2 − x 2 )
2 ⎜⎟ ⎝⎠ 2 2 4 4 = h 2 + ( 2 xh + h 2 )
2. x − x 2 7. V = ( π ⋅ 2 2 )0.4 1.6 = π