Concepts Review The integral diverges.

8.3 Concepts Review The integral diverges.

1. converge

b →∞ ∫ 0 cos x dx

3. ∫ – () f x dx ; () ∫ f x dx

11. ∫ ∞ e dx = [ln(ln )] x e =∞ –0 =∞

4. p>1

x ln x

The integral diverges.

Problem Set 8.3

dx ⎢ (ln ) x 2 ⎤ =∞ – =∞ In this section and the chapter review, it is understood

ln x

b The integral diverges.

that [ ( )] gx means lim [ ( )] gx and likewise for

a b →∞

1 1 1 similar expressions.

13. Let u = ln x, du = dx dv ,, = 2 dx v =− .

xx

1. e dx = ∫ ⎡⎤ e =∞ – =∞

∫ 2 2 dx = x lim b →∞ ∫ 2 2 dx

The integral diverges.

b →∞ ⎣ ⎢ x ⎥ b →∞ ∫ 2 2

dx ⎡ 1 ⎤

⎦ 1 e 14. xe – ∫ x 1 dx u = x, du = dx

3. ∫ 1 2 xe dx = ⎢ – e ⎥ = 0 – (– e –1 ) = ∞

4 4 dv = e dx v ,– = e ∫

⎦ 1 e The integral diverges.

1 1 The integral diverges.

4 4 Instructor’s Resource Manual

Section 8.3 489

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of

The integral diverges.

The integral diverges since both ∫ –

dx and ∫ 0 dx diverge.

– ∞ ( x 2 + 16) 2 ∫ – ∞ ( x 2 + 16) 2 ∫ 0 ( x 2 + 16) 2

dx

tan –1 +

by using the substitution x = 4 tan

19. ∫ 2 dx =

dx =

dx +

– ∞ x + 2 x + 10 ∫ – ∞ ( x + 1) 2 + 9 ∫ – ∞ ( x + 1) 2 + 9 ∫ 0 ( x + 1) 2 + 9

dx

1 1 –1 x + ∫ 1

dx = tan

by using the substitution x + 1 = 3 tan θ.

( x + 1) 2 + 9 3 3

–1 ∫ 1 dx =⎢ tan

∞ 2 dx x = ∫ – x dx + ∞ e –2 ∫ 0 e 2 x dx

For ∫ –

dx =

∫ – xe dx , use u = x, du = dx, dv = e dx v , = e 2 x ∞ . e ∞ 2

e ∫ 0 xe dx , use u = x, du = dx, dv = e dx v ,– = e 2 .

xe dx = ⎡ ⎢ – xe –2 x ⎤ +

–2 x

e –2 x dx = ⎡ – xe –2 x – e –2 x ⎤ = 0–0– ⎛ ⎞ ⎜ ⎟ =

– ∞ 2 x dx = – += 0

Section 8.3 Instructor’s Resource Manual

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of

21. ∫ – sech sech sech x dx = x dx =

25. The area is given by

∫ 0 x dx ∞ 2 ∞ ⎛ 1 1 ⎞

= [tan –1 (sinh )] x 0 + [tan –1 (sinh )] x ∞ ∫ 1 4 x 2 dx =

− 1 ∫ 1 – ⎜ ∞ 0 ⎝ 2–1 x 2 x + 1 ⎟ ⎠

22. ∫ 1 csch x dx = ∫ 1 dx = ∫ 1 x – x dx 2 ⎝ ⎝⎠ 3 ⎠ 2

sinh x

Note:. lim ln =

= 0 since

= ∫ 2 x dx x →∞ 2 x + 1 1

dx = ∫ e 2 du = ∫ e ⎜ –

⎝ u –1 u + 1 ⎟

⎠ 26. The area is

= [ln( – 1) – ln( u u + 1)]

≈ 0.7719 ⎣ ln x − ln x +⎤= 1 ⎦ 1 ⎢ ln

= 0 since lim

= 1 ⎟ ⎝ b →∞ b + 1 b →∞ b + 1 ⎠

27. The integral would take the form

k ∫ 3960 dx = [ k ln x

23. ∞− x

0 e cos x dx = ⎢ x (sin x − cos ) x

⎣ 2 e ⎦ 0 which would make it impossible to send anything out of the earth's gravitational field.

2 2 28. At x = 1080 mi, F = 165, so

(Use Formula 68 with a = –1 and b = 1.) k = 165(1080) 2 ≈ 1.925 10 × 8 . So the work done

⎡ in mi-lb is

(cos x + sin ) x ⎥

1.925 10 × 8 dx = 1.925 10 × 8 ⎡ − x − 1 ⎦ ⎤ 0 ∫ 1080 2

(Use Formula 67 with a = –1 and b = 1.)

29. FP =

100, 000 e − ⎢ t = 1,250,000

The present value is $1,250,000.

30. FP = ∞− 0.08 ∫

0 e t (100, 000 1000 ) + t dt

=− ⎡ ⎣ 1, 250, 000 e − t − 12,500 te − t − 156, 250 e − t ⎤

The present value is $1,406,250.

31. a.

() f x dx = ∫ 0 dx + ∫

dx + ∫ 0 dx

0 [] x a + 0 =

Instructor’s Resource Manual

Section 8.3 491

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of

x f x dx () −∞

x ⋅ 0 dx + ∫ a x dx +

b − a ∫ b x ⋅ 0 dx

Dokumen yang terkait

PEMBELAJARAN BILANGAN BULAT KELAS VII PADA TINGKAT SMP OLEH : SITTI HAFIANAH AZIS,S.Pd ABSTRAK - PEMBELAJARAN BILANGAN BULAT KELAS VII SMP (hafiana)

0 0 17

MENINGKATKAN HASIL BELAJAR SISWA KELAS VIII.A MTs DDI PADANGLAMPE DALAM MELAKUKAN OPERASI PERKALIAN BENTUK ALJABAR DENGAN MENGGUNAKAN TABEL Oleh: SITTI HAFIANAH AZIS,S.Pd ABSTRAK - PENGGUNAAN TABEL PD OPERASI PERKALIAN BENTUK ALJABAR (hafiana)

0 0 10

Latar Belakang - PEMBELAJARAN BERBASIS MASALAH (wana)

0 0 13

Peningkatan Hasil Belajar Pada Materi Perkalian Aljabar Dengan Menggunakan Alat Peraga Blokar (Penelitian Tindakan pada Siswa Kelas VII SMPN 3 Satap Balocci) Lisna Nurani ABSTRAK - Peningkatan Hasil Belajar Pada Materi Perkalian Aljabar Dengan Menggunakan

1 0 8

REALISTIC MATHEMATICS EDUCATION (RME) DALAM PEMBELAJARAN MATEMATIKA DI SMP Lisna Nurani *) Abstrak - REALISTIC MATHEMATICS EDUCATION (RME) DALAM PEMBELAJARAN MATEMATIKA DI SMP (lisna)

0 0 12

MATEMATIKA SEBAGAI PEMECAH MASALAH Sitti Mardiyah ABSTRAK - MATEMATIKA SEBAGAI PEMECAH MASALAH (mardiyah)

0 0 14

JURNAL NON PENELITIAN MODEL PEMBELAJARAN PROBLEM SOLVING DALAM PEMBELAJARAN MATEMATIKA DI SMP Mirwati, S. Ag Abstrak - MODEL PEMBELAJARAN PROBLEM SOLVING DALAM PEMBELAJARAN MATEMATIKA DI SMP (mirwati)

0 0 5

Metode Penelitian - MENINGKATKAN HASIL BELAJAR POKOK BAHASAN FAKTORISASI SUKU ALJABAR MELALUI PEMBELAJARAN TUTOR SEBAYA (sahara)

0 0 8

PEMBELAJARAN TUTOR SEBAYA SETTING KOOPERATIF B AB I PENDAHULUAN - PEMBELAJARAN TUTOR SEBAYA SETTING KOOPERATIF (sahara)

0 0 11

Copyright © 2018, IJER, p-ISSN 2541-2132, e-ISSN: 2541-2159 Factors Affecting English Language Learning in English as a Foreign Language (EFL) Context: A Literature Review Study

0 0 5