01 01 25 25 8 8 8 8 Analisis Stabilitas Hasil Cabai Hibrida (Capsicum annuum L.)

69 I F _TYPE_= CORR ; PROC I ML ; USE LI M; READ ALL VAR _NUM_ I NTO G; K=- G- 1 ; USE GI FAR; READ ALL VAR _NUM_ I NTO D; E=D 2 ; X= KE p; CONTAI NS LACK OF CORREL. BETWEEN ANY TWO GENOTYPES N=X[ , +] ; VAR= VAR1 : VAR12 ; CREATE FHP FROM X[ COLNAME=VAR] ; CONTAI NS LACK OF CORRELATI ON BETWEEN ANY TWO GENOTYPES APPEND FROM X; YOU CAN PRI NT THI S DATA SET TO OBTAI N DETAI LED I NFORMATI ON CREATE LACK FROM N[ COLNAME= LACKCORR ] ; APPEND FROM N; DATA KI YYA; MERGE FI VE KEEP=VAR VARMEAN W VHET LACK MNX; PROC PRI NT DATA=KI YYA; TI TLE1 TABLE A ; TI TLE2 PARTI TI ON OF THE G x E I NTERACTI ON SUM OF SQUARES I N TO SUMS OF ; TI TLE3 SQUARES DUE TO HETEROGENEI TY AMONG VARI ANCES AND LACK OF CORRELATI ON ; TI TLE4 AMONG PERFORMANCE VALUES OF I NDI VI DUAL GENOTYPES MUI R ET AL. 1992 ; VAR VAR VARMEAN W HETERO LACKCORR HET CORR; RUN; WE HAVE MUTED THE PRI NTI NG OF THI S PART BECAUSE THE PARTI TI ONI NG OF I NDI VI DUAL GENOTPE S WRI CKE S ECOVALENCE I NTO THAT DUE TO HETEROGENEI TY OR LACK OF CORRELATI ON I S SELDOM CORRECT. WE USED TWO FORMULAE FOR THI S PATI TI ONI NG. THE ONE PROVI DED FOR I NDI VI DUAL GENOTYPE AND THE ONE FOR THE TOTAL. THE LACK OF CORRELATI ON COMPUTED BY ADAPTI NG THE FORMULA FOR THE TOTAL I S NAMED LACKCORR, WHI LE THE ONE COMPUTED I N THE USUAL MANNER I S NAMED CORR. CORRESPONDI NG HETEROGENEI TY COMPONENTS ARE NAMED HETERO AND HET, RESPECTI VELY. I NTERESTED USERS CAN PRI NT THI S DATA SET AND SEE THE DESCREPANCY, THAT FOR SOME GENOTYPES THE LACK OF CORRELATI ON OR THE SUM OF THE LACK OF CORRELATI ON AND HETEROGENEI TY I S MORE THAN WRI CKE S ECOVALENCE, WHI LE FOR OTHER GENOTYPES I T I S LESS THAN THI S COMPONENT ; PROC MEANS DATA=KI YYA SUM NOPRI NT; VAR W HETERO LACKCORR; OUTPUT OUT=MR SUM=; Lampiran 1 Lanjutan PROC PRI NT DATA=MR; TI TLE1 TABLE 9 ; TI TLE2 TOTAL SUMS OF SQUARES DUE TO HETEROGENEI TY AMONG VARI ANCES ; TI TLE3 AND I MPERFECT CORRELATI ON ; VAR W HETERO LACKCORR; RUN ; s I NGULAR VALUE DECOMPOSI TI ON OF THE Gx E MATRI X FOR ORDI NATI ON DATA GELO; MERGE AH KEEP=ENV EM YAH KEEP=VAR VM ; RUN ; DATA ONE; SET BRUCE KEEP=VXE ; RUN ; PROC I ML ; RESET NOPRI NT FUZZ; START J AMBO; USE ONE; READ ALL I NTO G; X=SHAPE G, p, q ; Y=X` ; P=X Y; A=Y X; Q=EI GVAL P ; I F MI N Q . 001 THEN DO; I =LOC Q

0. 01

; Q[ I ] = ; END; ELSE DO; Q=Q; END; K=EI GVAL A ; I F MI N K . 001 THEN DO; I =LOC K

0. 01

; K[ I ] = ; END; ELSE DO; K=K; END; KEE=K` ; MEE=Q` ; R=EI GVEC P ; B=EI GVEC A ; R1= MEE

0. 25

R; B1= KEE

0. 25

B; VARPC= VI PC1 : VI PC12 ; ENVPC= EI PC1 : EI PC6 ; CREATE VARPC FROM R1[ COLNAME=VARPC] ; APPEND FROM R1; CREATE ENPC FROM B1[ COLNAME=ENVPC] ; APPEND FROM B1; FI NI SH JAMBO; RUN JAMBO; DATA SVD; MERGE GELO VARPC ENPC; PROC PRI NT DATA=SVD; VAR VAR VM VI PC1- - VI PC12 ENV EM EI PC1- - EI PC6; TI TLE1 TABLE 10 ; TI TLE2 SI NGULAR VALUE DECOMPOSI TI ON AND ORDI NATI ON I N BI PLOTS ; TI TLE3 DATA READY FOR GRAPHI NG OF GxE BI PLOTS ; RUN ; 70 TI TLE1 ; TI TLE2 H= 1 PLOT OF I PC1 AGAI NST BOTH VARI ETAL AND ENVI RONMENTAL MEANS ; TI TLE3 H= 1 OPEN CI RCLES ARE FOR GENOTPES CLOSED ONES FOR ENVI RONMENTS ; SYMBOL1 F= COLOR=BLACK H=

0. 8

V=CI RCLE I =NONE; SYMBOL2 F= C=BLACK H=

0. 8

V=DOT I =NONE; PROC GPLOT DATA=SVD; PLOT EI PC1 EM= 2 VI PC1 VM= 1 OVERLAY FRAME; RUN ; TI TLE1 ; TI TLE2 H= 1 PLOT OF I PC2 AGAI NST I PC1 FOR BOTH VARI TI ES AND ENVI RONMENTS ; TI TLE3 H= 1 OPEN CI RCLES ARE FOR GENOTPES CLOSED ONES FOR ENVI RONMENTS ; SYMBOL1 F= COLOR=BLACK H=

0. 8

V=CI RCLE I =NONE; SYMBOL2 F= C=BLACK H=

0. 8

V=DOT I =NONE; PROC GPLOT DATA=SVD; PLOT VI PC2 VI PC1= 1 EI PC2 EI PC1= 2 OVERLAY FRAME; RUN ; PART I I I A SAMPLE PROGRAM TO COMPUTE THE PAI R- WI SE Gx E I NTERACTI ON OF TEST CULTI VARS WI TH CHECKS PROPOSED BY LI N AND BI NNS I N 1985. DATA PRESENTED BY THE AUTHORS WI TH 4 CHECKS AND 29 TEST CULTI VARS I S USED HERE. THE USER HAS TO MODI FY THI S ACCORDI NG TO THE NUMBER OF CHECKS I N HI S EXPERI MENT DATA LI NES OF THE FI RST CHECK DATA ADI PATI 1; SET BRUCE KEEP=ENV YI ELD VM VI ; I F _N_ LT 7 ; RENAME YI ELD=YD1 VM=MEAN1 VI =I ND1; PROC SORT ; BY ENV; RUN ; DATA LI NES OF THE SECOND CHECK DATA BI OLA; SET BRUCE KEEP=ENV YI ELD VM VI ; I F 6 LT _N_ LT 13 ; RENAME YI ELD=YD2 VM=MEAN2 VI =I ND2; Lampiran 1 Lanjutan PROC SORT ; BY ENV; RUN ; DATA LI NES OF THE THI RD CHECK DATA GADA; SET BRUCE KEEP=ENV YI ELD VM VI ; I F 12 LT _N_ LT 19 ; RENAME YI ELD=YD3 VM=MEAN3 VI =I ND3; PROC SORT ; BY ENV; RUN ; DATA LI NES OF THE FOURTH CHECK DATA HOT_BEAU; SET BRUCE KEEP=ENV YI ELD VM VI ; I F 18 LT _N_ LT 25 ; RENAME YI ELD=YD4 VM=MEAN4 VI =I ND4; PROC SORT ; BY ENV; RUN ; DATA LI NES OF THE FOURTH CHECK DATA I HPERI AL; SET BRUCE KEEP=ENV YI ELD VM VI ; I F 24 LT _N_ LT 31 ; RENAME YI ELD=YD5VM=MEAN5 VI =I ND5; PROC SORT ; BY ENV; RUN ; DATA LI NES OF THE REMAI NI NG GENOTPES TEST CULTI VARS DATA UU; SET BRUCE KEEP=VAR ENV YI ELD VM VI ; I F _N_ GT 30 ; PROC SORT ; BY ENV; RUN ; DATA ZZ; MERGE UU ADI PATI 1 BI OLA GADA HOT_BEAU I HPERI AL; BY ENV; CHK1= I ND1- VI 2 ; CHK2= I ND2- VI 2 ; CHK3= I ND3- VI 2 ; CHK4= I ND4- VI 2 ; CHK5= I ND5- VI 2 ; PROC SORT ; BY VAR; RUN ; PROC MEANS DATA=ZZ SUM NOPRI NT; VAR YI ELD YD1 YD2 YD3 YD4 YD5 CHK1 CHK2 CHK3 CHK4 CHK5; BY VAR; OUTPUT OUT=COMP SUM=YI ELD YD1 YD2 YD3 YD4 YD5 GE1 GE2 GE3 GE4 GE5; RUN ; DATA QQ; SET COMP DROP=_TYPE_ _FREQ_ ; MEK= 1 ; GXECH1=GE1 2 q- 1 ; GXECH2=GE2 2 q- 1 ; GXECH3=GE3 2 q- 1 ; GXECH4=GE4 2 q- 1 ; GXECH5=GE5 2 q- 1 ; YLD=YI ELD q; MEAN1=YD1 q; MEAN2=YD2 q; MEAN3=YD3 q; MEAN4=YD4 q; MEAN5=YD5 q; DI FF1=YLD- MEAN1; DI FF2=YLD- MEAN2; DI FF3=YLD- MEAN3; DI FF4=YLD- MEAN4; DI FF5=YLD- MEAN5; RUN ; DATA CHGXE; MERGE QQ TEST KEEP=MEK MSBALANC ; BY MEK; COMP1=GXECH1 MSBALANC; COMP2=GXECH2 MSBALANC; COMP3=GXECH3 MSBALANC; COMP4=GXECH4 MSBALAN C; COMP5=GXECH5 MSBALANC; PROB1= 1 - PROBF COMP1, q- 1 , p- 1 q- 2 ; PROB2= 1 - PROBF COMP2, q- 1 , p- 1 q- 2 ; PROB3= 1 - PROBF COMP3, q- 1 , p- 1 q- 2 ; PROB4= 1 - PROBF COMP4, q- 1 , p- 1 q- 2 ; PROB5= 1 - PROBF COMP5, q- 1 , p- 1 q- 2 ; T=ABS TI NV

0. 025