Definition of the Laplace Transform of F (t) LAPLACE TRANSFORMS

33 Definition of the Laplace Transform of F (t) LAPLACE TRANSFORMS

33.1. ᏸ{ ( )} Ft =

0 e F t dt st () = fs ∫ ()

In general f (s) will exist for s > a where a is some constant. ᏸ is called the Laplace transform operator.

Definition of the Inverse Laplace Transform of f (s) If ᏸ{F(t)} = f (s), then we say that F (t) = ᏸ –1 {f (s)} is the inverse Laplace transform of f (s). ᏸ –1 is called the

inverse Laplace transform operator.

Complex Inversion Formula The inverse Laplace transform of f (s) can be found directly by methods of complex variable theory. The

result is

2 π i ci −∞ e f s ds () ∫ = 2 π i T lim →∞ c iT e f s ds () ∫ −

where c is chosen so that all the singular points of f (s) lie to the left of the line Re{s} = c in the complex s plane.

LAPLACE TRANSFORMS

Table of General Properties of Laplace Transforms

f (s)

F (t)

33.3. afs 1 () + 2 () bf s

33.5. f (s – a)

33.6. e f (s)

33.7. sf (s) – F (0)

Ft ′ ()

33.8. sfs 2 () − sF () 0 −′ F () 0 F ′′ () t

33.9. sfs n () n

− n s − 1 F () 0 − s − 2 F () 0 − ⋯ − F ( − 1 ′ ) () 0 F (n) (t)

33.10. fs ′ ()

–tF(t)

33.11. f ′′ () s

t 2 F (t)

33.12. f (n) (s)

(–1) n t n F (t)

∫ () 0 F u du

( n − 1 )!

33.15. t

f (s)g(s)

FuGt ()( − u du ∫ ) 0

LAPLACE TRANSFORMS

f (s)

F (t)

33.16. s () ∫ f u du

Ft ()

33.17. − − e sT su () 1 F u du e ∫ 0 F (t) = F(t + T)

πt ∫ 0

e () F u du

33.19. f J

ut F u du

33.20. f t n /2 u − n / + 2 J n ( 2 ut F u du

fs ( + 1 / s )

33.21. 2 J ( 2 ut ( u F u du s )) ( )

u − 32 / e − s 2 / 4 33.22. u () f u du

∫ 0 Γ+ ( u 1 )

∑ k = 1 Q ′ () α k

33.24. k e α k t

Qs ()

P (s) = polynomial of degree less than n,

Q (s) = (s – a 1 )(s – a 2 ) … (s – a n ) where a 1 ,a 2 , …, a n are all distinct.

LAPLACE TRANSFORMS

Table of Special Laplace Transforms

33.30. n n = 123 ,,, ( …

33.33. s 2 + cos at a 2

1 e bt sin at

33.34. ( s − b ) 2 + a 2

e bt cos at

1 sinh at

33.36. s 2 − a 2 a

33.37. s 2 − a 2 cosh at

1 e bt sinh at

33.38. ( s − b ) 2 − a 2

LAPLACE TRANSFORMS

s − b ) 2 2 e cosh − at a

a b − e 33.40. at ( s

33.41. ( s as )( b ) a ≠ b be − ae

1 sin at − at cos at

33.42. ( s 2 + a 22 )

t sin at

33.43. ( s 2 + a 22 )

1 at cosh at − sinh at

33.47. ( s 2 − a 22 )

t sinh at

33.48. ( s 2 − a 22 )

2 a s 2 sinh at at cosh

cosh at + 2 at sinh at

t cosh at

1 ( 3 − at 22 )sin at − 3 at cos at

33.52. ( s 2 + a 23 )

t sin at

− 2 at cos at

33.53. ( s 2 + a 23 )

+ at 22 )sin at − at cos at

( s 2 + a 23 )

8 a 3 s 3 3 t sin at at 2 cos at

( s 2 + a 23 )

LAPLACE TRANSFORMS

f (s)

F (t) s 4 ( 3 − at 22 )sin at + 5 at cos at

33.56. ( s 2 a + 23 )

33.58. ( s 2 a + 23 )

2 a s 3 − 3 as 2 1 2

33.59. ( s 2 a 23 t cos at

s 4 − 6 as 22 + a 4 1 3

33.60. 2 t cos ( at s

+ a 24 )

s 3 − as 2 t 3 sin at

33.61. ( s 2 + 24 a )

24 a

1 ( 3 + at 22 )sinh at 3 at cosh at

( s 2 − 23 a )

at 2 cosh at − t sinh at

33.63. ( s 2 − 23 a )

8 a 3 s 2 at cosh at

+ ( at − 1 )sinh at

( s 2 − 23 a )

8 a 3 s 3 3 t sinh at

8 a s 4 ( 3 + at 22 )sinh at 5 at cosh

8 a s 5 ( 8 + at 22 ) cosh at + 7 at sinh at

33.67. ( s 2 − a 23 )

3 s 2 + a 2 t 2 sinh at

33.68. ( s 2 − 23 a )

2 a s 3 + 3 as 2 1 t 2

33.69. ( 2 cosh s at

− a 23 )

s 4 + 6 as 22 + a 4 1 3

33.70. ( s 2 24 6 t cosh at

s 3 + as 2 t 3 sinh at

33.71. ( s 2 a − 24 )

33.72. s 3 a 3 3 a 2 ⎨

3 sin

cos

e − 3 at / 2

LAPLACE TRANSFORMS

33.75. 3 e at 2

33.78. 4 4 3 (sin at cosh at − cos sinh ) at s at

sin sinh at at

33.79. s 4 4 a + 4

(sin at

cosh at cos sinh ) at at

+ 4 a 4 2a

33.81. 4 4 cos cosh at at

33.82. 4 4 (sinh at sin ) s at

2 a 2 at − cos ) a at

33.83. s 4 4 (cosh

33.84. 4 4 (sinh at + sin ) at

s − a 2a

1 2 (cosh at + cos ) at

33.88. ss ( − a )

− be erfc( bt )

LAPLACE TRANSFORMS

f (s)

F (t)

33.90. 2 2 J at 0 ()

33.91. 2 2 0 () I at

33.92. n

>− n 1 a J at n ()

1 33.93. n >− a I at n ()

s 2 − a 2 bs ( − s e 2 + a 2 )

Jatt )) s 2 0

33.96. ( s 2 + 1 a 232 ) /

33.97. ( s 2 a 232 /

Ft () = nn , ⬉ t <+ n 1 , n = 012… ,,,

See also entry 33.165.

∑ 33.103. r

where [t] = greatest integer ⬉ t

se ( s r ) = − s ( 1 − re − s )

Ft () = rn n , ⬉ t <+ n 1 , n = 012… ,,,

See also entry 33.167.

e −/ as

cos 2 at

LAPLACE TRANSFORMS

e a 4 33.109. t e

erfc / ( a 2 t )

e − as

e ( b bt a + ) erfc ⎛ bt ⎞ +

ln[( s 2 + a 2 ) / a 2 ]

ln[( s aa )]

ln t γ = Euler’s constant = .5772156 …

2(cos at − cos ) bt

ln 2 t γ = Euler’s constant = .5772156 …

γ = Euler’s constant = .5772156 …

γ = Euler’s constant = .5772156 …

LAPLACE TRANSFORMS

erfc ( as / )

π t s 2 a 2 2 a − at 22

e / 4 erfc / ( s 2 a )

e s 2 / 4 a 2 erfc / ( s 2 a )

erf( ) at

e as erfc as

sin as π Si as () + cos as Ci as ()

2 Si as 1 () Ci as () ln ⎛ t + 33.134. a ⎞

a ⎣⎢ 2 ⎦⎥ ⎝⎜ ⎠⎟

0 ᏺ (t) = null function

1 δ (t) = delta function

See also entry 33.163.

LAPLACE TRANSFORMS

f (s)

F (t)

π cos ∑

sinh n sx x 2 ∞ () − 1 nx π

s sinh sa

a a sinh

4 sx ∞ () 1 − n

sin s cosh sa

sin

sin π s sinh as

cosh sx

1 π t s cosh sa

cosh n sx 4 () − 1 ( 2 n − 1 ) π x

cos − )

n = 1 2 n − 1 2 a 2 a sinh sx

a + 2 ∑ n 2 sin π sin n = 1 a a

s 2 sinh sa

sinh sx

2 a 2 a a cosh

s 2 cosh sa

2 a + 2 ∑ 2 1 − cos π ⎞ n = 1 n a  a ⎠

s 2 sinh sa

cosh sx

2 2 a 2 a cosh sx

s 2 cosh sa

s 3 cosh sa

sinh xs

− n 2 π () 2 1 ne ta / 2 sin nx π

a 2 sinh − as ∑ n = 1 a

cos cosh

()( 1 n − 1 2 n 1 ) e − ( 2 n − 1 ) 2 2 t / 4 a 2

n = 1 2 a sinh

as

2 xs ∞

a ∑ () − 1 e n sin = 1 2 a

s cosh as

cosh xs

+ ∑ () − 1 e π cos π

− n 2 2 ta / 2 nx

s sinh as

a a n = 1 a sinh xs

s sinh as

a cosh xs

4 ∞ () n

1 − 33.153. 1 e − ( 2 n − 1 )

2 π 2 t / 4 a 2 ( 2 n 1 ) cos

− ππ x

s cosh as

sinh xs

2 33.154. 2 ( 1 e − n π ta / 2 )sin nx π s 2 sinh as

xt 2 a 2 ∞ () 1 − n

a cosh xs

1 2 2 16 a 2 ∞ () 1 n

cos s cosh as

e − ( 2 n − 1 ) 2 π 2 t / 44 a 2

LAPLACE TRANSFORMS

where λ l , λ 2 , … are the positive roots of J 0 ( λ) = 0

1 ∞ e − λ n 2 ta / 2 2 2 J ( xa / ) J ix s 0 ( )

4 ∑ 2 3 n == λ n J

where λ 1 , λ 2 , … are the positive roots of J 0 ( λ) = 0

Triangular wave function

Fig. 33-1 Square wave function

1 as

⎞ s tanh ⎛⎝ 2 ⎠

Fig. 33-2

Rectified sine wave function

coth ⎛ as ⎞

as 22 + π 2 ⎝ 2 ⎠

Fig. 33-3

Half-rectified sine wave function π a

( as 22 − + as π 2 )( 1 − e )

Fig. 33-4 Sawtooth wave function

Fig. 33-5

LAPLACE TRANSFORMS

f (s)

F (t)

Heaviside’s unit function ᐁ(t – a)

e − as

s See also entry 33.138.

Fig. 33-6 Pulse function

e − as ( 1 e − ⑀ − s )

Fig. 33-7 Step function

s ( 1 − e − as ) See also entry 33.102.

Fig. 33-8