Taylor Series for Functions of One Variable TAYLOR SERIES

22 Taylor Series for Functions of One Variable TAYLOR SERIES

n − f 1 ( n ′′ −− ( )( ax − a ) f ( )( ax a )

22.1. fx () = fa () +′ fax ( )( − a )

where R n , the remainder after n terms, is given by either of the following forms:

f () n ( )( ξ x − a ) n

22.2. Lagrange’s form: R n =

f () n ( )( x

ξ − ξ )( x − a )

22.3. Cauchy’s form: R

( n − 1 )!

The value x, which may be different in the two forms, lies between a and x. The result holds if f(x) has continuous derivatives of order n at least.

If lim n →∞ R n = 0 the infinite series obtained is called the Taylor series for f(x) about x ⫽ a. If a ⫽ 0, the series , is often called a Maclaurin series. These series, often called power series, generally converge for all values of x

in some interval called the interval of convergence and diverge for all x outside this interval. Some series contain the Bernoulli numbers B n and the Euler numbers E n defined in Chapter 23, pages 142⫺143.

Binomial Series

n − 1 nn ( − 1 ) n − 22 nn ( − 1 )( n − 2 22.4. ) ( a + x ) = a + na x +

Special cases are

22.5. ( a + x ) 2 = a 2 + 2 ax + x 2

22.6. ( a + x ) 3 = a 3 + 3 ax 2 + 3 ax 2 + x 3

22.7. ( a + x ) 4 = a 4 + 4 ax 3 + 6 ax 22 + 4 ax 3 + x 4

22.8. ( 1 + x ) − 1 =−+ 1 x x 2 − x 3 + x 4 − ⋅⋅⋅

⫺ 1<x<1

22.9. ( 1 + x ) − 2 =− 12 x + 3 x 2 − 4 x 3 + 5 x 4 − ⋅⋅⋅

⫺ 1<x<1

22.10. ( 1 + x ) − 3 =− 13 x + 6 x 2 − 10 x 3 + 15 x 4 − ⋅⋅⋅

⫺ 1<x<1

TAYLOR SERIES

1 13 i

135 i i

22.11. ( 1 + x ) − 12 / =− 1 x +

2 24 246 i i + ⋅⋅⋅

x 3 ⫺ 1<x⬉1

1 1 2 13 i

22.12. ( 1 + x ) =+ 1 x −

36 ⫺ i − 3 1<x⬉1

Series for Exponential and Logarithmic Functions

22.15. e =++ 1 x

22.16. a x

22.17. ln ( 1 + x ) =− x

22.19. ln x 2 ⎪ ⎛ − ⎞

22.20. ln x

⎝⎜ x ⎠⎟ 2 ⎝⎜ x ⎠⎟ 3 ⎝⎜ x ⎠⎟

Series for Trigonometric Functions

22.21. sin x =− x + − + ⋯ − ∞< < ∞ x

22.22. cos x =− 1 + − + ⋯ − ∞< < ∞ x

x 3 2 x 5 17 x 7 2 2 n ( 2 2 n 1 ) Bx 2 n − 11

22.23. tan x =+ x

22.24. cot x

22.25. sec x =+ 1 ⋯

720 + + ( )! 2 n +

1 x 7 x 3 31 x 5 22 ( 2 n − 1 1 ) B xx 2 n − 1

=++ n + + ⋯ + + ⋯ 0 < || x x 6 360 , 15 120 ( )! 2 n < π − 1 1 x 3 13 i x 5 135 i i x 22.27. 7 sin x =+ x

22.26. csc x

23 + 245 i + 2467 i i + ⋯ || x <1

22.28. cos − 1 x π

1 x 3 13 i x 5

= 2 − sin − 1 x = 2 − x +

|| x <1

TAYLOR SERIES

|| x < 1

22.29. tan − 1 x =

22.31. sec − 1 x cos ( / ) − 1 1 x π

22.32. csc − 1 x sin ( / ) − 1

Series for Hyperbolic Functions

22.33. sinh x =+ x + + + ⋯

− ∞< < ∞ x

22.34. cosh x =+ 1 + + + ⋯

− ∞< < ∞ x

x 3 2 x 5 17 x 7 () 1 n − 12 2 n ( 2 2 n 1 )) Bx 2 n − 1 π

22.35. tanh x x

22.36. coth x

22.37. sech x 1 ⋯ −

22.38. csch x =−+ x 6 360 −

− 1 ⎪⎪ 23 i 245 i i 2467 i ii

|| | x < 1

22.39. sinh x = ⎨ ⎛

⎡ if cosh x 0 ,⭌ x 1 ⎤

22.40. cosh − 1

i i i x 6 ⎬ ⎩⎪ − ⎝⎜ 24 66 6 1 ⎠⎟ ⎣⎢ − if cosh x < 0 , x ⭌ ⎭⎪ 1 ⎦⎥ − 1 x 3 x 5 x 22.41. 7 tanh x =+ x ⋯ | x |<1

Miscellaneous Series

sin x

22.43. e =++ 1 x

2 − 8 − 15 + ⋯ −∞< < ∞ x

22.44. e cos x e ⎛ 1 = ⎞ −

x 2 x 4 31 x 6

−∞< < ∞ x

TAYLOR SERIES

22.45. e tan x =++ 1 x

2 + 2 + 8 + ⋯ || x < 2

x 3 x 5 x 6 2 n / x 2 sin( n π /) 4 x n

22.46. e sin x =+ x x 2 + −

x x 3 x 4 2 n / 2 cos( n /) 4 x n

22.47. e cos x =+− 1 x

x 2 x 4 x 6 2 2 n − 1 Bx 2 n n

22.48. ln | sin | x = n ln | | x − ⋯

− 1 Bx 22.49. n ln | cos | n =−

22.50. ln | tan | ln | | x = x + +

22.51. + x =−+ x ( 1 1 ) x 2 +++ ( 1 1 1 3

|| x <1

Reversion of Power Series Suppose

22.52. yCxCx = + 2 + Cx 3 + Cx 4 + Cx 5 1 6 2 3 4 5 + Cx 6 + ⋯

then

22.53. xCyCy = 1 + 2 2 + Cy 3 3 + Cy 4 4 + Cy 5 5 + Cy 6 6 + ⋯

where

22.54. cC 11 = 1

22.55. cC 1 3 2 =− c 2

22.56. cC 5 1 2 3 = 2 c 2 − cc 13

22.57. cC 1 7 4 = 5 ccc 5 c 123 2 − 3 2 − cc 1 4

22.58. cC 9 = 6 ccc 2 + 3 cc 2 1 2 1 3 cc 3 4 1 2 5 24 − 1 5 + 14 c 2 − 21 ccc 12 33

22.59. cC 11 = 7 ccc 3 + 84 ccc 3 + 7 ccc 3 − 28 ccc 2 2 4 2 1 2 6 1 25 12 3 1 34 1 2 33 − cc 1 6 − 28 ccc 1 2 4 − 42 c 5 2

Taylor Series for Functions of Two Variables