Definition of a Definite Integral DEFINITE INTEGRALS
18 Definition of a Definite Integral DEFINITE INTEGRALS
Let f(x) be defined in an interval a ⬉ x ⬉ b. Divide the interval into n equal parts of length ⌬x = (b − a)/n. Then the definite integral of f(x) between x = a and x = b is defined as
18.1. b
a () f x dx = lim{ ( ) n fa ∆ x + fa ( ∆∆ x →∞ ) + x + fa ( + 2 ∆∆ x ) xx + ⋯ + fa ( + ( n − 1 ) ∆∆ x ) x ∫ }
The limit will certainly exist if f(x) is piecewise continuous. If f x d () = dx gx ( ), then by the fundamental theorem of the integral calculus the above definite integral can
be evaluated by using the result
18.2. () f x dx
∫ () a = ()
∫ () a ()
dx g x dx = gx a = gb − ga
If the interval is infinite or if f(x) has a singularity at some point in the interval, the definite integral is called an improper integral and can be defined by using appropriate limiting procedures. For example,
18.3. a () f x dx ∫ lim = b →∞ ∫ a () f x dx
f x dx lim ∫ () =
18.4. b ()
∫ f x dx a
18.5. a () f x dx = lim
f x dx
if is a singular point..
b 18.6. b
a () f x dx = ∫ lim ∈ → 0 ∫ a + fx () dx if is a singulaar point. a ∈
General Formulas Involving Definite Integrals
b b b 18.7. b
a {() ∫ fx ± gx () ± hx () ± ⋯ } dx = a () f x dx ± a () g x dx ± () ∫ h x dx ∫∫ ∫ a ± ⋯
b b 18.8. b
a () cf x dx = c a () f x dx where is any constant. ∫ c ∫
18.9. a
a () f x dx ∫ 0 =
b 18.10. a ∫
a () f x dx =− ∫ b () f x dx
18.11. ∫ a () f x dx = ∫ a () f x dx + c () ∫ f x dx
DEFINITE INTEGRALS
18.12. b
a () f x dx = ( b − afc )() where is between and c a b ∫ .
This is called the mean value theorem for definite integrals and is valid if f(x) is continuous in
a ⬉ x ⬉ b.
b 18.13. b
a ()() f x g x dx = fc ()
where is between and bb c ∫ a ∫ a g x dx
This is a generalization of 18.12 and is valid if f(x) and g(x) are continuous in a ⬉ x ⬉ b and g(x) ⭌ 0. Leibnitz’s Rules for Differentiation of Integrals
1 ∫ φ 11 () α d + φα −F (,) α 1 2 d α φα α 1 d α
Approximate Formulas for Definite Integrals In the following the interval from x = a to x = b is subdivided into n equal parts by the points
a =x 0 ,x 1 ,x 2 , …, x n –1 ,x n = b and we let y 0 = f(x 0 ), y 1 = f(x 1 ), y 2 = f(x 2 ), …, y n = f(x n ), h = (b – a)/n.
Rectangular formula:
18.15. b
a () f x dx ≈ hy ∫ ( 0 ++ y 1 y 2 + ⋯ + y n − 1 )
Trapezoidal formula:
18.16. a () f x dx ≈ ( y 0 + 2 y 1 + 2 y 2 + ⋯ + 2 y n − 1 + y n ∫ )
Simpson’s formula (or parabolic formula) for n even:
18.17. () f x dx
Definite Integrals Involving Rational or Irrational Expressions
dx
x 2 2 + = a 2 a ∞ x p − 1 dx
18.19. 0 π = , 0 p ∫ 1
x + a n = n sin[( m 1 )/]
π sin 18.21. m ∫ β
a dx
18.23. a 2 − x dx 2 ∫ π
DEFINITE INTEGRALS
a a m ++ 1 np [( m 1 )/ ] ( n p 1 )
18.24. 0 x m ( a n x n ) p dx
n Γ [( m + 1 ))/ n ++ p 1 ]
, 0 <+< m 1 ∫ nr
18.25. + 1 0 n n nr =
x dx m
() 1 − 1 r − π a m +− 1 nr Γ [( m )/ ]
n sin[ (( m + 1 ) / ]( π nr − 1 )! [( Γ m + 1 )/ n −+ r 1 ]
Definite Integrals Involving Trigonometric Functions All letters are considered positive unless otherwise indicated.
18.26. 0 sin mx sin nx dx ∫ =
0 mn , integers and m ≠ n
π / 2 mn , intege rrs and m n =
0 mn , integers and m ≠ n
18.27. 0 cos mx cos ∫ nx dx =
π / 2 mn , inntegers and m n =
0 mn , integers and m + n even
18.28. 0 sin mx cos ∫ nx dx =
2 mm /( 2 −− n 2 ) mn , integers and m + n odd
cos 2 x dx ∫ π 0 = ∫ 0 =
18.29. sin x dx
m 12 ,, ∫ … 0
18.30. sin x dx
cos x dx
= ∫ 0 = ii⋯
1352 ii⋯ m − 1
246 2 m 2 =
= m cos 2 + ∫ 1
π / 2 π / 2 246 ii⋯ 2 m
18.31. sin 2 m + 1 x dx
0 ∫ x dx 0 =
, m 12 ,, …
1352 ii⋯ m
π / 2 sin 21 p −
x cos 2 q − 1 x dx Γ ()() p Γ 18.32. q ∫ 0 =
∞ sin px
0 ∫ dx x = 0 p = 0
∫ 0 x dx = π / 20 << p q
18.35. ∫ dx 0 x 2 =
π q / 2 p ⭌ q > 0
18.36. 0 2 dx ∫ π
∞ sin 2 px
∞ 1 cos px
x 2 dx
DEFINITE INTEGRALS
∞ cos px − cos qx
18.38. ∫ dx 0 ln
18.39. dx π ( q − p ∫ )
∞ cos px − cos qx
18.40. π − ∫ ma 0
∞ cos mx
x 2 2 dx =
18.41. dx π e − ∫ ma 0
∞ x sin mx
π ( 1 e − ma ∫ )
18.43. ∫ 0 a
18.44. ∫ 0 a =
+ b cos x
π / 2 dx
18.45. ∫ 0 a b =
cos ( / ) − 1 ba
+ cos x
dx
dx
( a + b sin ) x 2 = ∫ 00 ( a + b cos ) x 2 = ( a 2 b 232 ) − /
18.49. 0 2 2 2 , a < 1 , m = 012 ,,, ∫∫ …
cos mx dx
12 − a cos x + a =− 1 a
18.50. sin ax dx 2 cos ax dx 2 ∫ π
0 = ∫ 0 = 22 a
18.51. sin n
0 ∫ ax dx = n 1 n
na 1 / Γ ( / )sin , 2 n
18.52. 0 cos ax dx n = 1 / n Γ ( / ) cos 1 n π , n ∫ 1
∫ 0 dx x = 2
∞ sin x
18.54. 0 π p dx =
Γ ( )sin ( π /) 2 ∞ cos x
18.55. 0 dx
2 Γ ( ) cos ( p p π /) 2 <<
18.56. sin ax 2 0 b cos 2 bx dx π ∫ cos =
a − sin a
22 a
DEFINITE INTEGRALS
22 a + sin ∫ a a
18.57. cos ax 2
0 cos 2 bx dx
cos
x 3 ∫ dx = 8
18.59. ∫ π 0 dx
x 4 = 3 ∞ tan x
18.60. dx ∫ π 0
1 + m tan x = 4 π / 2 x
π / 2 dx
18.64. dx ∫ π 0 = ln 2
∫ dx 0
18.65. − cos x
∞ cos x
− ∫ 1 x dx = γ
∞ 1 dx
18.66. 0 2 − cos ∫ x = γ
1 + x
x
π 18.67. p ∫ dx
∞ tan − 1 px − − 1 tan qx
0 x ln = 2 q
Definite Integrals Involving Exponential Functions Some integrals contain Euler’s constant g = 0.5772156 . . . (see 1.3, page 3).
18.68. 0 e − ax cos ∫ bx dx =
18.69. e − ax
0 sin ∫ bx dx = a 2 + b 2
18.70. dx = tan − 1 ∫ b
0 ∫ dx x = ln a
0 e − ax dx
∫ bx dx =
18.73. e − ax 2
0 cos
DEFINITE INTEGRALS
π e ( − 4 ac )/ 4 a ∫ b
18.74. e − ( ax 2 ++ bx c )
dx
erfc
2 ∞ x 2 where erfc (p) =
e − dx
)/ 4 ∫ a
π ( b e 2 − 4 ac
18.75. e − ( ax 2 ++ bx c ) dx
Γ( n 1 18.76. ) xe dx ∫ +
− ax
− ax 2 m 18.77. )/ ] xe dx Γ[( + ∫ 12
0 = 2 a ( m + 12 )/
18.78. e − ( ax 2 + bx /) 2
18.79. ∫ 0 e x 1 1 2 + 2 2 + 3 2 + 4 2 + ⋯ =
18.80. 0 x dx = Γ( ) n
e − + 1 1 n 2 n + 3 n +
For even n this can be summed in terms of Bernoulli numbers (see pages 142–143). ∞ x dx
0 e x += 1 1 2 − 2 2 + 3 2 − 4 2 + = 12
dx = Γ( ) n n − n + n − ⋯ ∫ 0
18.82. x
e + 1 1 2 3
For some positive integer values of n the series can be summed (see 23.10). ∞ sin mx
∫ coth 0
18.83. dx
18.84. − x ∫ dx 0 e 1 +− x x
0 x dx = 2 γ
18.86. ∫ 0 dx
ln + 18.87. p ∫ 0 =
dx = cot − 1 0 a 2 a − ln ( a 2 1 ∫ )
∞ e − ax ( 1 cos ) x
DEFINITE INTEGRALS
Definite Integrals Involving Logarithmic Functions
1 ()! 1 n n
18.90. 0 x m (ln ) x dx n
+ 1 + 1 m >− 1 , n = 012 ,,, …
If n ≠ 0, 1, 2, … replace n! by Γ(n + 1).
18.91. 0 1 x ∫ dx =−
1 ln x
18.92. 0 1 − x ∫ dx =− 6
1 ln x
18.93. ∫ + 0 x dx = 12
1 ln ( 1 x )
18.94. ∫ 0 x dx =− 6
1 ln ( 1 − x )
18.95. ln ln ( x 1 + x dx )
∫ 0 =− 22 ln 2 − 12
18.96. ln ln ( x 1
0 − x dx ∫ ) =− 2 6
18.97. 0 1 x dx =− π 2 csc p π cot p π 0 << p ∫ 1
18.99. − 0 x e ln ∫ x dx =− γ
22 ∫ ln )
e − x ln x dx =−
ln + ∫
∫ ln ∫ =− 2
(ln ) ∫ 2
0 x dx = 2 + 24
ln ∫ 2
x ln sin x dx =−
∫ 21 = ln −
sin ln sin
x dx
0 + b cos ) x dx = 2 π a + a 2 − b 2 ∫ ) ∫
ln ( sin )
0 a + b x dx =
ln ( a ln (
= π 0 ln
ln( a + b cos ) x dx
DEFINITE INTEGRALS
= ln ∫ 2 8
dx = {(cos − 1 a ) 2 − ( ccos − 1 b )} ∫ 2
0 sec ln x
1 + a cos x
sin a sin 2 a sin 3 18.111. a ln 2 sin dx =− ⋯ ∫
See also 18.102.
Definite Integrals Involving Hyperbolic Functions
= a tanh ∫ π
∞ sin ax
sinh bx
0 cosh bx =
0 sinh ax = 4 a 2
sinh ax 2 a + { 1 n + 1 + 2 n + 1 ++ 3 n + 1 + }
x dx n
If n is an odd positive integer, the series can be summed. ∞ sinh ax
dx π csc ∫ π 0
e bx =
∞ sinh ax
18.117. ∫ 0 bx e dx = − cot
Miscellaneous Definite Integrals
() f ax () f bx
0 dx = {() f 0 −∞ f ∫ ( )}ln x a
∞ fx () −∞ f ()
This is called Frullani’s integral. It holds if f ′(x) is continuous and ∫ 0 dx converges.
1 dx 1 1 1
18.120. a ( a x ) m − 1 ( a x ) n − 1 dx () 2 a + mn − = +− 1 Γ ()() m Γ ∫ n
Section V: Differential Equations and Vector Analysis
BASIC DIFFERENTIAL EQUATIONS
and SOLUTIONS
DIFFERENTIAL EQUATION SOLUTION
19.1. Separation of variables
∫ dx +
∫ dy = c
fx 2 ()
gy 1 ()
19.2. Linear first order equation dy +
pxy () = Qx ()
ye ∫ Pdx = Qe ∫ Pdx dx ∫ + c
dx
19.3. Bernoulli’s equation dy
( 1 − n ) Pdx
( 1 − n ) + Pdx Pxy () = Qxy () e ∫ =− ( 1 n ) Qe ∫ dx ∫ + c
dx
where y
=y 1 −n . If n = 1, the solution is
ln y = ( Q ∫ − P dx ) + c
19.4. Exact equation M (x, y)dx + N(x, y)dy = 0
⎛ N ∂ M x dy ⎞ ∫ c
Mx
∂ y ∫ ⎠⎟
where ∂M/∂y = ∂N/∂x. where ∂x indicates that the integration is to be per-
formed with respect to x keeping y constant.
19.5 Homogeneous equation
∫ F () −
⎝⎜ x ⎠⎟
where y = y/x. If F(y) = y, the solution is y = cx.
BASIC DIFFERENTIAL EQUATIONS AND SOLUTIONS
y F(xy) dx + x G(xy) dy = 0
G () d
{() G − F ( )} + where y = xy. If G(y) = F(y), the solution is xy = c.
ln x =
19.7. Linear, homogeneous second order Let m 1 ,m 2 be the roots of m 2 + am + b = 0. Then there equation
are 3 cases.
Case 1. m 1 ,m 2 real and distinct:
Case 2. m 1 ,m 2 real and equal: y mx = ce 1 a mx , b are real constants.
1 + cxe 1 2 Case 3. m 1 = p + qi, m 2 = p − qi: y = e px ( cos c 1 qx + c 2 sin qx )
where p = −a/2, q = b − a 2 /. 4
19.8. Linear, nonhomogeneous second There are 3 cases corresponding to those of entry 19.7 order equation
a, b are real constants.
e mx 2 − + mx
m 22 − m 1 ∫
xe mx 1 − + mx e 1 R x dx ∫ ()
e mx xe − − m 1 11 x R x dx ∫ ()
e Rx ( )sin qx dx
BASIC DIFFERENTIAL EQUATIONS AND SOLUTIONS
19.9. Euler or Cauchy equation Putting x =e t , the equation becomes
and can then be solved as in entries 19.7 and 19.8 above.
19.10. Bessel’s equation dy 2 2 dy
See 27.1 to 27.15.
19.11. Transformed Bessel’s equation
where q
= 2 p − β. 2
19.12. Legendre’s equation dy 2 dy
( 1 − x 2 ) 2 − 2 x + nn ( + 1 ) y = 0 y = cPx 1 n () + cQx 2 n () dx
dx
See 28.1 to 28.48.