Lagrange Interpolation INTERPOLATION

42 Lagrange Interpolation INTERPOLATION

Two-point formula

42.1. px () = fx ()

0 fx x () − x 1

where p (x) is a linear polynomial interpolating two points

( , ( )), ( , ( )), x 0 fx 0 x 1 fx 1 x 0 ≠ x 1

General formula

42.2. px () = fxL () 0 n , 0 () x + fxL () 1 n , 1 () x + ⋯ + fxL () n nn , ( xx )

where

L nk , =

i = ∏ 0 , ik ≠ x k − x i

and where p(x) is an nth-order polynomial interpolating n + 1 points ( , ( )), x k fx k k = 01… ,, ,; n and x i ≠ x j for i ≠ j

Remainder formula

Suppose f x () C ∈ n + 1 [ , ]. ab Then there is a ξ( ) ( , ) x ∈ ab such that:

f n +1 ( ( )) ξ x

42.3. fx () = px () + ( 1 )! ( x − x 0 )( x − x 1 )( ⋯ x − x

Newton’s Interpolation

First-order divided-difference formula

fx () − fx ()

42.4. fxx [,]

Two-point interpolatory formula

42.5. px () = fx () 0 + fxx [ , ]( 0 1 x − x 0 )

where p(x) is a linear polynomial interpolating two points

( , ( )), ( , ( )), x 0 fx 0 xfx 1 1 x 0 ≠ x 1

INTERPOLATION

Second-order divided-difference formula

fxx [,] 1 2 − fxx [,]

42.6. fxxx [,,] 0 1 2 =

Three-point interpolatory formula

42.7. px () = fx () 0 + fxx [ , ]( 0 1 x − x 0 ) + fxxx [ , , ]( 0 1 2 x − x 0 ) (( x − x 1 )

where p(x) is a quadrant polynomial interpolating three points

( , ( )), ( , ( )), ( , ( )) x 0 fx 0 xfx 1 1 x 2 fx 3

General kth-order divided-difference formula

fxx [,,,] 1 2 … x k − fxx [,,, …

k 42.8. − fxx 0 1 x 1

xx k − x 0

General interpolatory formula

42.9. px () = fx () 0 + fxx [ , ]( 0 1 x − x 0 ) + ⋯ + fxx [ , , , ]( 0 1 … x n x −− x 0 )( x − x 1 )( ⋯ x − x n − 1 ) where p(x) is an nth-order polynomial interpolating n + 1 points

( , ( )), x k fx k k = 01… ,,,; n and x i ≠ x j for i ≠ j

Remainder formula

Suppose f x () C ∈ n + 1 [ , ]. ab Then there is a ξ( ) ( , ) x ∈ ab such that

f n +1 ( ( )) x

42.10. fx () = px ()

x − x 0 )( x − x 1 )( ⋯ x x

Newton’s Forward-Difference Formula

First-order forward-difference at x 0

42.11. Δf x () 0 = fx () 1 − fx () 0

Second-order forward difference at x 0

42.12. Δ 2 fx ()

0 = Δ fx () 1 − Δ fx () 0

General kth-order forward difference at x 0

k − 1 k − 42.13. Δ 1 fx ()

0 = Δ fx () 1 − Δ fx () 0

Binomial coefficient

⎛ s ⎞ ss ( − 1 )( ⋯ s −+ k 1 42.14. ) ⎝⎜ k ⎠⎟ =

Newton’s forward-difference formula

42.15. px () = ⎛ ⎞

∑ k Δ fx ()

k = 0 ⎝⎜ k ⎠⎟ where p(x) is an nth-order polynomial interpolating n + 1 equal spaced points

( , ( )), x

k fx k x k = x 0 + kh k = 01… ,, , n

INTERPOLATION

Newton’s Backward-Difference Formula

First-order backward difference at x n

42.16. ∇ fx () n = fx () n − fx ( n − 1 )

Second-order backward difference at x n

42.17. ∇ 2 fx () n =∇ fx () n −∇ fx ( n − 1 )

General kth-order backward difference at x n

42.18. ∇ k fx ()

Newton’s backward-difference formula

where p(x) is an nth-order polynomial interpolating n + 1 equal spaced points

( , ( )), x k fx k x k = x 0 + kh

k = 01… ,, , n

Hermite Interpolation

Two-point basis polynomials

⎞ − x 42.20. 2 H 0 )

Two-point interpolatory formula

42.21. Hx 3 () = fxH () 0 10 , + fxH () 1 11 , +′ fxH ()ˆ 0 10 , + ′ )) ˆ fx ( 1 H 11 ,

where H 3 (x) is a third-order polynomial, agrees with f (x) and its first-order derivatives at two points, i.e., Hx 3 () 0 = fx ( ), 0 Hx 3 ′ () 0 =′ fx ( ), 0 Hx 3 () 1 = fx ( ), 1 H 33 ′ () x 1 =′ fx () 1

General basis polynomials

42.22. H nj , =− 12

L 2 nj , ( ), x H ˆ nj , = ( xx −) x j L nj 2 , L () x x ⎝⎜

nj ′ , () j ⎠⎟ where

L nj , =

i = ∏ 0 , ij ≠ x j − x i

INTERPOLATION

General interpolatory formula

42.23. H 2 n + 1 () x = ∑ fxH () j nj , () x + fxH ′ ()ˆ() j nj , x

j = 00 ∑ j = 0

where H 2 n + 1 () x is a (2n + 1)th-order polynomial, agrees with f(x) and its first order derivatives at n + 1 points, i.e.,

H 2 n + 1 () x k = fx ( ), k H 2 ′ n + 1 () x k =′ fx () k

k = 01 ,, … , n

Remainder formula

Suppose f x ()

∈ n C 2 + 2 [ , ]. ab Then there is a ξ( ) ( , ) x ∈ ab such that

42.24. fx () H = ξ

f 2 n + 2 ( ( )) x

2 n + 1 () x +

x x )( x x ) ⋯x ( x )

( 2 n + 2 )! ( − 0 − 11 − n