2.8.2 Persamaan Momentum
Hukum Newton kedua mengatakan laju perubahan momentum sebuah partikel fluida sama dengan total penjumlahan gaya pada partikel.
Laju peningkatan momentum partikel fluida = total gaya pada partikel fluida
Laju peningkatan momentum pada x-, y- dan z- per unit volum sebuah partikel fluida dinyatakan sebagai:
Dt Du
ρ Dt
Dv ρ
Dt Dw
ρ ………………………………..2.26
Disini dibedakan dua jenis gaya yang bekerja pada partikel fluida: a. gaya permukaan yang meliputi : gaya tekanan, gaya kekenatalan
b. gaya bodi yang meliputi : gaya gravitasi, gaya centrifugal, gaya Coriolis, gaya elektromagnetik.
Tegangan pada elemen fluida dinyatakan dalam tekanan dan sembilan viscous stress tegangan kekentalan yang komponennya telihat pada Gambar 2.16.
Tekanan, tegangan normal, dinyatakan dalam p. viscous stresses dinyatakan dalam τ. Umumnya notasi akhir τ
ij
digunakan untuk mengindikasikan arah dari viscous stress. Akhiran i dan j pada τ
ij
mengindikasikan bahwa tegangan bergerak kearah j pada permukaan normal i.
x y
z
zz
τ
zy
τ
zx
τ
yx
τ
yy
τ
yz
τ
xy
τ
xz
τ
xx
τ
zy
τ
zz
τ
zx
τ
yy
τ
yz
τ
yx
τ
xx
τ
xz
τ
xy
τ
Gambar 2.16 Komponen viscous stress
Universitas Sumatera Utara
Jika dipertimbangkan gaya pada komponen x akibat tekanan p dan tegangan komponen τ
xx
, τ
yx ,
τ
zx
yang dapat dilihat pada gambar 2.17. Gaya yang sejajar dengan arah sebuah sumbu co-ordinat mempunyai tanda positif dan yang gaya
berlawanan arah memperoleh tanda negative. Total gaya pada arah x adalah penjumlahan dari gaya di komponen-komponen elemen fluida.
x y
z
x x
p p
δ 2
1 ∂
∂ −
x x
xx xx
δ τ
τ
2 1
∂ ∂
− x
x p
p
δ
2 1
∂ ∂
+ x
x
xx xx
δ τ
τ
2 1
∂ ∂
+ y
y
yx yx
δ τ
τ
2 1
∂ ∂
− z
z
zx zx
δ τ
τ
2 1
∂ ∂
+
z z
zx zx
δ τ
τ
2 1
∂ ∂
− y
y
yx yx
δ τ
τ 2
1 ∂
∂ +
Gambar 2.17 Tegangan pada komponen-komponen pada arah X
Pada permukaan yang berpasangan E,W kita peroleh
z y
x x
x p
z y
x x
x x
p p
z y
x x
x x
p p
xx xx
xx xx
xx
∂ ∂
∂
∂
∂ +
∂ ∂
− =
∂ ∂
∂ ∂
+ +
∂ ∂
+ −
+ ∂
∂
∂
∂ −
−
∂
∂ −
τ δ
τ τ
δ δ
τ τ
δ
2 1
2 1
2 1
2 1
……2.27a Total gaya pada arah x pada permukaan yang berpasangan N,S adalah:
z y
x y
z x
y y
z x
y y
yx yx
yx yx
yx
δ δ
δ τ
δ δ
δ τ
τ δ
δ δ
τ τ
∂ ∂
=
∂
∂ +
+
∂
∂ −
− 2
1 2
1
……………..2.27b Dan total gaya pada arah x pada permukaan T dan B adalah
z y
x z
y x
z z
y x
z z
zx zx
zx zx
zx
δ δ
δ τ
δ δ
δ τ
τ δ
δ δ
τ τ
∂ ∂
=
∂
∂ +
+
∂
∂ −
− 2
1 2
1 ……………...2.27c
Total gaya per unit volume pada fluida disebabkan tegangan-tegangan permukaan ini sama dengan penjumalahan persamaan 2.27a,b,c dibagi olevolume δxδyδz :
Universitas Sumatera Utara
z y
x p
zx yx
xx
∂ ∂
+ ∂
∂ +
∂ +
− ∂
τ τ
τ
…………………………………………………..2.28 tanpa mempertimbangkan body force pada detail perhitungan effek secara
keseluruhan dapat dimasukkan dengan menyatakan sebuah sumber source S
Mx
dari momentum x per unit volume per unit waktu. Persamaan momentum pada komponen x diperoleh dengan mengatur laju
perubahan pada momentum x pada partkel fluida yang jumlahnya sama dengan total gaya pada arah x di elemen akibat dari tegangan permukaan ditambah
dengan laju peningkatan pada momentum akibat sumber source:
Mx zx
yx xx
S z
y x
p Dt
Du +
∂ ∂
+ ∂
∂ +
∂ +
− ∂
=
τ τ
τ ρ
………………………………….2.29a Maka persamaan momentum untuk komponen y dan z dapat dituliskan:
My zy
yy xy
S z
y p
x Dt
Dv +
∂ ∂
+ ∂
+ −
∂ +
∂ ∂
=
τ τ
τ ρ
………………………………….2.29b
Mz zz
yz xz
S z
p y
x Dt
Dw +
∂ +
− ∂
+ ∂
∂ +
∂ ∂
=
τ τ
τ ρ
……………………………….....2.29c
Tanda pada tekanan menandakan tekanan bekerja berlawanan dengan norma viscous stress, dikarenakan pada umumnya tanda umum yang digunakan untuk
beban tarik adalah positif tegangan normal seingga pada tekanan yang mana bekerja sebagai tekanan beban normal maka memiliki tanda negatif.
2.8.3 Persamaan-Persamaan Energi