Pembatasan Masalah Rumusan Masalah

merupakan fungsi kendala. Berikut diberikan definisi fungsi dan fungsi linear. Definisi 2.1. Fungsi Edwin J. Purcell, 1987:48 Sebuah fungsi � adalah suatu aturan padanan yang menghubungkan settiap obyek � dalam satu himpunan yang disebut daerah asal, dengan sebuah nilai tunggal � � dari himpunan kedua. Himpunan nilai yang diperoleh secara demikian disebut daerah hasil fungsi tersebut. Definisi 2.2. Fungsi Linear Winston, 2004 Fungsi �� 1 , � 2 , … , � � merupakan fungsi linear jika dan hanya jika fungsi f dapat dituliskan �� 1 , � 2 , … , � � = � 1 � 1 + � 2 � 2 + ⋯ + � � � � , dengan � 1 , � 2 , … , � � merupakan kostanta. Contoh 2.1 Diberikan fungsi sebagai berikut: �� 1 , � 2 = 2 � 1 + 7 � 2 2.1 �� 1 , � 2 = 6 � 1 � 2 3 2.2 Fungsi 2.1 merupakan fungsi linear dan fungsi 2.2 merupakan fungsi nonlinear. Masalah pemrograman linear pada dasarnya memiliki ketentuan- ketentuan berikut ini Winston, 2004 a Masalah pemrograman linear berkaitan dengan upaya memaksimumkan pada umumnya keuntungan atau meminimumkan pada umumnya biaya yang disebut sebagai fungsi tujuan dari pemrograman linear. Fungsi tujuan ini terdiri dari variabel-variabel keputusan. b Terdapat kendala-kendala atau keterbatasan, yang membatasi pencapaian tujuan yang dirumuskan dalam pemrograman linear. Kendala-kendala ini dirumuskan dalam fungsi-fungsi kendala yang terdiri dari variabel-variabel keputusan yang menggunakan sumber-sumber daya yang terbatas itu. c Ada pembatasan tanda untuk setiap variabel dalam masalah ini. Untuk sembarang � � , pembatasan tanda menentukan � � harus non negatif � � ≥ 0 atau tidak dibatasi tandanya unretsricted in sign. d Memiliki sifat linearitas. Sifat ini berlaku untuk semua fungsi tujuan dan fungsi-fungsi kendala. Pemrograman linear merupakan salah satu teknik dari riset operasi untuk memecahkan permasalahan optimasi dengan memaksimumkan atau meminimumkan suatu bentuk fungsi objektif atau fungsi tujuan dengan kendala-kendala berupa fungsi yang linear. Pemecahan masalah Linear Programming dapat dilakukan dengan metode aljabar, metode grafik, metode simpleks atau dengan menggunakan perangkat lunak software komputer.