Biosintesa Pembentukan Minyak Atsiri

2.2.2. Biosintesa Pembentukan Minyak Atsiri

Minyak atsiri pada umumnya mengandung persenyawaan terpena dalam jumlah yang besar, dimana terpena merupakan persenyawaan hidrokarbon tidak jenuh dan unit terkecil dalam molekulnya disebut dengan isoprene C5H8 Agusta,2000. Mekanisme dari tahap-tahap reaksi biosintesis terpenoid yaitu asam asetat yang telah diaktifkan oleh koenzim A melalui kondensasi jenis Claisen menghasilkan asam asetoasetat. Senyawa yang dihasilkan ini dengan koenzim A melakukan kondensasi sejenis aldol menghasilkan rantai karbon bercabang sebagaimana ditemukan pada asam mevalonat. Reaksi-reaksi berikutnya ialah fosforilasi, eliminasi asam fosfat dan dekarboksilasi menghasilkan IPP Isopentenil Pirofosfat yang selanjutnya berisomerisasi menjadi DMAPP Dimetilalil Pirofosfat oleh enzim isomerase, IPP sebagai unit isoprene aktif bergabung secara kepala ke ekor dengan DMAPP dan penggabungan ini merupakan langkah pertama dari polimerisasi isoprene untuk menghasilkan terpenoid. Penggabungan ini terjadi karena serangan electron dari ikatan rangkap IPP terhadap atom karbon dari DMAPP yang kekurangan electron diikuti oleh penyingkiran ion pirofosfat. Serangan ini menghasilkan geranil pirofosfat GPP yakni senyawa antara bagi semua senyawa monoterpen. Penggabungan selanjutnya antara satu unit IPP dan GPP, dengan mekanisme yang sama seperti antara IPP dan DMAPP menghasilkan Farnesil Pirofosfat FPP yang merupakan senyawa antara bagi semua senyawa seskuiterpen. Senyawa-senyawa diterpen diturunkan dari geranil-geranil pirofosfat GGPP yang berasal dari kondensasi antara satu unit IPP dan FPP dengan mekanisme yang sama. Sintesa terpenoid sangat sederhana sifatnya. Ditinjau dari segi teori reaksi organic sintesa ini hanya menggunakan beberapa jenis reaksi dasar. Reaksi-reaksi selanjutnya dari senyawa antara GPP, FPP dan GGPP untuk menghasilkan senyawa-senyawa terpenoid satu per satu hanya melibatkan beberapa jenis reaksi sekunder. Reaksi-reaksi sekunder ini lazimnya adalah hidrolisa, siklisasi, oksidasi, Universitas Sumatera Utara reduksi, dan reaksi-reaksi spontan yang dapat berlangsung dengan mudah dalam suasana netral dan pada suhu kamar, seperti isomerasi, dehidrasi, dekarboksilasi dan sebagainya. Berikut ini adalah gambar biosintesa terpenoid dapat dilihat pada gambar dibawah ini : CH 3 -C-SCoA O CH 3 -C-SCoA O CH 3 -C-CH 2 -C-SCoA O O CH 3 -C-SCoA O Asetil koenzim A Asetoasetil koenzim A CH 3 -C-CH 2 -C-SCoA OH CH 2 -C-SCoA O O H CH 3 -C-CH 2 -C-OH OH CH 2 CH 2 -OH O CH 3 -C-CH 2 -C OPP CH 2 CH 2 -OPP O O Asam mevalonat OPP CO 2 CH 3 C CH CH 2 OPP CH 2 H CH 3 -C=CHCH 2 -OPP CH 3 Isopentenil pirofosfat IPP dimetilalil pirofosfat DMAPP ATP ADP OPP H OPP + IPP DMAPP OPP geranil pirofosfat Monoterpen OPP H OPP OPP H Seskuiterpen 2 X Triterpen OPP Geranil-geranil pirofosfat farnesil pirofosfat Diterpen 2 X Tetraterpen Gambar 2.2. Reaksi Biosintesa Terpenoid Achmad, 1986 Universitas Sumatera Utara Untuk menjelaskan hal diatas dapat diambil beberapa contoh monoterpen. Dari segi biogenetik, perubahan geraniol, nerol, dan linalool dari satu menjadi yang lain berlangsung sebagai akibat reaksi isomerasi. Ketiga alkohol ini, yang berasal dari hidrolisa geranil pirofosfat GPP dapat menjalai reaksi-reaksi sekunder berikut, misalnya dehidrasi menghasilkan mirsena, oksidasi menjadi sitral dan oksidasi reduksi menghasilkan sitronelal. Berikut ini contoh perubahan senyawa monoterpen dapat dilihat pada gambar 2.3. CH 2 OH Geraniol trans OH Linalool H 2 O CHO Mirsen H O , CHO CH 2 OH Sitronelal Nerol cis Sitral O Gambar 2.3. Perubahan senyawa monoterpen Achmad, 1986 Senyawa-senyawa seskuiterpen diturunkan dari cis-farnesil pirofosfat dan trans-farnesil pirofosfat melalui reaksi siklisasi dan reaksi sekunder lainnya. Kedua isomer farnesil pirofosfat ini dihasilkan in vivo melalui mekanisme yang sama seperti isomerisasi antara geraniol dan nerol. Perubahan farnesil pirofosfat menjadi seskuiterpen dapat dilihat pada gambar 2.4. Universitas Sumatera Utara OH Farnesol OPP Trans-Farnesil pirofosfat OPP Cis-Farnesil pirofosfat CH 2 H + Humulena H 2 C H + Bisabolen Gambar 2.4. Reaksi biogenetik beberapa seskuiterpen Achmad, 1986

2.2.3. Isolasi Minyak Atsiri dengan Destilasi

Dokumen yang terkait

Analisis Komponen Kimia Minyak Atsiri Dari Daun Jeruk Bali Merah (Citrus Maxima (Burm.) Merr) Secara Kromatografi Gas – Spektroskopi Massa (Gc-Ms)

2 98 70

Karakterisasi Simplisia Dan Isolasi Serta Analisis Komponen Minyak Atsiri Daun Sirih Hutan (Piper crocatum Ruiz & Pav) Yang Segar Dan Simplisia Secara Gas Chromatography-Mass Spectrometry

6 80 106

Identifikasi Komponen Kimia Minyak Atsiri Buah Kecombrang (Etlingera elatior) dan Uji Aktivitas Antioksidan Minyak Atsiri dan Ekstrak Air dengan Metode DPPH

7 80 90

Analisis Komponen Minyak Atsiri dari Daun Tembelekan (Lantana camara L.) secara Kromatografi Gas – Spektrometri Massa (GC-MS)

19 169 58

Identifikasi Komponen Kimia Minyak Atsiri Buah Kecombrang (Etlingera Elatior) Dan Uji Aktivitas Antioksidan Minyak Atsiri Serta Ekstrak Air Dan Ekstrak Etanol Dengan Metode DPPH

1 28 71

Karakterisasi Simplisia, Isolasi, Dan Analisis Komponen Minyak Atsiri Buah Segar Dan Kering Tumbuhan Attarasa (Litsea cubeba Pers.) Secara GC-MS

15 107 92

Isolasi Dan Analisis Komponen Kimia Minyak Atsiri Dari Daun Jinten (Coleus Aromatikus Benth) Dengan GC – MS Dan Uji Anti Bakteri

9 52 104

Karakterisasi Simplisia, Isolasi dan Analisis Komponen Minyak Atsiri Buah Kemukus (Cubebae fructus) dari Wonosobo dan Padang Sidempuan Secara GC-MS

2 78 87

Isolasi Dan Analisis Komponen Kimia Minyak Atsiri Bunga Kemangi (Ocimum basilicum L) Serta Uji Aktivitas Antioksidan Dan Antibakteri

13 98 105

BAB 2 TINJAUAN PUSTAKA - Analisis Komponen Kimia Dan Uji Aktivitas Antibakteri Minyak Atsiri Daun Legundi (Vitex trifolia L)

0 2 20