Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun

(1)

PRA RANCANGAN PABRIK

PEMBUATAN KALSIUM LAKTAT

DARI UBI KAYU

BERKAPASITAS 10.000 TON/TAHUN

TUGAS AKHIR

Diajukan Untuk Memenuhi Persyaratan Ujian Sarjana Teknik Kimia

Oleh : Nurhidayah

050425005

PROGRAM STUDI TEKNIK KIMIA

FAKULTAS TEKNIK

UNIVERSITAS SUMATERA UTARA

MEDAN


(2)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun, KATA PENGANTAR

Puji dan syukur penulis panjatkan kehadirat Allah SWT karena atas berkat dan rahmat-Nya lah penulis diberikan petunjuk dan jalan, sehingga penulis dapat menyelesaikan tugas akhir ini dengan lancar dan baik.

Adapun judul dari tugas akhir ini adalah “Pra Rancangan Pabrik

Pembuatan Kalsium laktat dari Ubi kayu dengan Kapasitas 10.000 Ton/Tahun”.

Pra rancangan pabrik ini disusun untuk melengkapi tugas dan syarat dalam menempuh ujian sarjana pada Program Studi Teknik Kimia, Fakultas Teknik, Universitas Sumatera Utara.

Dalam menyelesaikan Tugas Akhir ini penulis banyak menerima bantuan dari berbagai pihak. Untuk itu dengan segala ketulusan hati penulis mengucapkan terima kasih yang sebesar-besarnya kepada:

1. Ibu Renita Manurung ST. MT, selaku ketua Departemen Teknik Kimia

2. Bapak Ir. Indra Surya.Msc selaku pembimbing I yang banyak membantu dalam penyelesaian Tugas Akhir ini

3. Ibu Maya Sarah ST.MT selaku pembimbing II yang telah banyak memberi masukkan dalam penyelesaian Tugas Akhir ini

4. Bapak dan Ibu Staf Pengajar dan Pegawai Jurusan Teknik Kimia

5. Orang Tua penulis yang tercinta, Ayahanda dan Ibunda yang telah

membesarkan, memberikan doa, motivasi dan cinta serta mendidik dengan penuh kasih sayang.

6. Rekan satu patner, Bang Eri yang selalu setia membantu.

7. Temanku yang terbaik, Adek, Gia, Junita terimakasih atas dukungannya dan jangan pernah melupakanku.

Medan, Juni 2008 Penulis


(3)

INTISARI

Kalsium laktat dibuat dengan cara hidrolisa pati dari ubi kayu dengan menggunakan asam klorida 90% dalam reaktor berpengaduk dengan temperatur operasi 20 0C pada tekanan 1 atm. Reaksi yang terjadi dalam reaktor bersifat eksotermis dan panas yang timbul diserap oleh air pendingin, dimana air pendingin masuk pada temperatur 10 0C keluar pada temperatur 20 0C.

Kalsium laktat diproduksi 10.000 ton/tahun dengan 360 hari kerja dalam satu tahun, hari selebihnya digunakan untuk pembersihan dan perbaikan peralatan pabrik. Lokasi pabrik direncanakan di sekitar hilir Sungai Silau Kuala Tanjung Asahan, Sumatera Utara, dengan luas areal 45.350 m2, tenaga kerja yang dibutuhkan berjumlah 170 orang dengan bentuk badan usaha Perseroan Terbatas (PT) yang dipimpin oleh seorang General Manager dengan struktur organisasi sistem garis dan staf.

Hasil analisa ekonomi Pabrik Pembuatan Kalsium laktat sebagai berikut :

- Modal investasi : Rp. 492.808.068.553,-

- Biaya produksi : Rp. 440.603.365.463,-

- Hasil penjualan : Rp. 587.078.730.000,-

- Laba bersih : Rp. 102.522.755.176,-

- Profit Margin (PM) : 24,95 %

- Break Even Point (BEP) : 59,33 %

- Return on Investment (ROI) : 20,8 %

- Pay Out Time (POT) : 4,8 tahun

- Internal Rate of Return (IRR) : 46,48 %

Dari analisa ini diperoleh kesimpulan bahwa pabrik ini layak untuk didirikan.


(4)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun, DAFTAR ISI

Halaman LEMBAR PENGESAHAN

KATA PENGANTAR……… i

INTISARI………... iii

DAFTAR ISI……….. iv

DAFTAR TABEL………. vi DAFTAR GRAFIK………

viii

BAB I PENDAHULUAN

1.1. Latar Belakang………

I-1

1.2. Rumusan Masalah………..

I-1

1.3. Tujuan Perancangan………...

I-1

BAB II TINJAUAN PUSTAKA

2.1. Ubi Kayu………. II-1

2.2. Sifat Bahan……….. II-6

2.3. Deskripsi Proses………. II-9

BAB III NERACA MASSA………

III-1

BAB IV NERACA PANAS………

IV-1

BAB V SPESIFIKASI PERALATAN……….

V-1

BAB VI INSTRUMENTASI DAN KESELAMATAN KERJA

6.1. Instrumentasi……….. VI-1


(5)

6.2. Keselamatan Kerja………. VI-5

6.3. Keselamatan Kerja Pada Pbrik Pembuatan Kalsium Laktat….VI-6

BAB VII UTILITAS

7.1. Kebutuhan Uap (Steam)……… VII-1

7.2. Kebutuhan Air………. VII-2

7.3. Kebutuhan Listrik………. VII-9

7.4. Kebutuhan Bahan Bakar……….. VII-9

7.5. Unit Pengolahan Limbah……… VII-11

7.6. Spesifikasi Peralatan Utilitas……….. VII-19

BAB VIII LOKASI DAN TATA LETAK PABRIK

8.1. Lokasi Pabrik……… VIII-1

8.2. Tata Letak Pabrik ………... VIII-3

8.3. Perincian Luas Tanah………

VIII-4

BAB IX ORGANISASI DAN MANAJEMEN PERUSAHAAN

9.1. Pengertian Organisasi Dan Manajemen……….. IX-1

9.2. Bentuk Badan Usaha………... IX-1

9.3. Bentuk Struktur Organisasi………. IX-2

9.4. Uraian Tugas, Wewenang dan Tanggung Jawab……… IX-3


(6)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun,

9.5. Tenaga Kerja dan Jam Kerja………... IX-6

9.6. Kesejahteraan Tenaga Kerja………. IX-8

BAB X ANALISA EKONOMI

10.1. Modal Ivestasi……… X-1

10.2. Biaya Produksi Total (BPT)/Total Cost (TC)…………. X-4

10.3. Total Penjualan (Total Sales)………. X-5

10.4. Perkiraan Rugi/Laba Usaha……… X-5

10.5. Analisa Aspek Ekonomi………. X-5

BAB XI KESIMPULAN……….. ….

XI-1

DAFTAR PUSTAKA……… ix

LAMP.A PERHITUNGAN NERACA MASSA………...

LA-1

LAMP.B PERHITUNGAN NERACA PANAS………...

LB-1

LAMP.C PERHITUNGAN SPESIFIKASI PERALATAN…………

LC-1

LAMP.D PERHITUNGAN SPESIFIKASI PERALATAN

UTILITAS…….LD-1

LAMP.E PERHITUNGAN ASPEK EKONOMI………...


(7)

DAFTAR TABEL

Halaman Tabel 3.1. Neraca Massa Pada Reaktor Hidrolisa……….

III-1

Tabel 3.2. Neraca Massa Pada Sentrifuge……….

III-2

Tabel 3.3. Neraca Massa Pada Reaktor Neutralizer………. III-3

Tabel 3.4. Neraca Massa Pada Membran Reverse Osmosis……… III-3

Tabel 3.5. Neraca Massa Pada Evaporator – 01……….. III-3

Tabel 3.6. Neraca Massa Pada Mixer – 01……….. III-4

Tabel 3.7. Neraca Massa Pada Fermentor………

III-4

Tabel 3.8. Neraca Massa Pada Decanter………...

III-4

Tabel 3.9. Neraca Massa Pada Filter Press………. III-5

Tabel 3.10. Neraca Massa Pada Evaporator – 02……….. III-5

Tabel 3.11. Neraca Massa Pada Spray Dryer………. III-5

Tabel 4.1. Neraca Panas Pada Reaktor Hidrolisa……… IV-1


(8)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun,

Tabel 4.2. Neraca Panas Pada Sentrifuge……… IV

-2

Tabel 4.3. Neraca Panas Pada Reaktor Neutralizer………... IV -3

Tabel 4.4. Neraca Panas Pada Membran Reverse Osmosis……….. IV -3

Tabel 4.5. Neraca Panas Pada Evaporator – 01……… IV -3

Tabel 4.6. Neraca Panas Pada Mixer – 01……… IV

-4

Tabel 4.7. Neraca Panas Pada Fermentor……….. IV

-4

Tabel 4.8. Neraca Panas Pada Decanter………. IV

-4

Tabel 4.9. Neraca Panas Pada Filter Press………... IV-5 Tabel 4.10. Neraca Panas Pada Evaporator – 02……….. IV-5 Tabel 4.11. Neraca Panas Pada Spray Dryer……….. IV-5


(9)

BAB I PENDAHULUAN

I. Ubi Kayu

Ubi kayu (Manihot utilissima Pohl) atau (Manihot esculenta Crant) berasal dari Amerika Selatan (Brazillia). Masuk ke Indonesia pada abad ke –17 melalui pedagang Portugis. Dalam dunia perdagangan ubi kayu dikenal dengan Cassava (Inggris), Yuka (Spanyol) dan mandiaca (Portugal). Sekarang ini Indonesia menjadi penghasil ubi kayu terbesar kedua di dunia. Pembudidayaan ubi kayu tidak sukar dan dapat tumbuh di tanah-tanah yang kurang subur dengan hasil yang cukup memuaskan (Brautlecht, 1953)

Adapun sistematika dari tanaman ubi kayu adalah sebagai berikut: Divisio : Spermatophyta

Sub divisio : Angiospermae Kelas : Dicotiledoneae

Ordo : Euphorbiales

Familia : Euphorbiaceae

Genus : Manihot utilissima Pohl atau Manihot esculenta Crant

Nama Daerah : Kentila (Aceh), Godong hau (Batak), Gawi farasi (Nias), Singkong, Sampean (Sunda)

Kandungan karbohidrat dari ubi kayu adalah tertinggi dibandingkan dengan jenis umbi-umbian lainnya dan hal ini dapat dilihat pada table 1.

Komposisi ubi kayu dipengaruhi oleh varietas, umur panen, lingkungan agronomi dan tempat tumbuh (Wijandi, 1976)

Pada umumnya kadar pati pada ubi kayu rata-rata 30 %. Kadar pati pada jenis ubi kayu pahit lebih tinggi dari pada ubi kayu manis, sehingga jenis ubi kayu yang pahit lebih banyak diperdagangkan untuk membuat tepung tapioca (Ciptadi, 1976)


(10)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun, I.2. Tujuan

Adapun tujuannya adalah untuk meningkatkan harga dari bahan baku yaitu ubi kayu dan dapat menghasilkan bahan kimia yang berasal dari ubi kayu yang selama ini ubi kayu sendiri terbuang secara percuma, yaitu kalsium laktat.

I.3. Perumusan masalah

Bahan baku dari pembuatan kalsium laktat yaitu ubi kayu lebih mempunyai harga jual dipasaran. Untuk hasil yang lebih bagus menghasilkan kalsium laktat adalah ubi kayu racun yang mana umbinya tidak untuk dikonsumsi.


(11)

BAB II

TINJAUAN PUSTAKA

2.1. Ubi Kayu

Ubi kayu (Manihot utilissima Pohl) atau (Manihot esculenta Crant) berasal dari Amerika Selatan (Brazillia). Masuk ke Indonesia pada abad ke –17 melalui pedagang Portugis. Dalam dunia perdagangan ubi kayu dikenal dengan Cassava (Inggris), Yuka (Spanyol) dan mandiaca (Portugal). Sekarang ini Indonesia menjadi penghasil ubi kayu terbesar kedua di dunia. Pembudidayaan ubi kayu tidak sukar dan dapat tumbuh di tanah-tanah yang kurang subur dengan hasil yang cukup memuaskan (Brautlecht, 1953)

Adapun sistematika dari tanaman ubi kayu adalah sebagai berikut: Divisio : Spermatophyta

Sub divisio : Angiospermae Kelas : Dicotiledoneae

Ordo : Euphorbiales

Familia : Euphorbiaceae

Genus : Manihot utilissima Pohl atau Manihot esculenta Crant

Nama Daerah : Kentila (Aceh), Godong hau (Batak), Gawi farasi (Nias), Singkong, Sampean (Sunda)

2.1.1. Komposisi Zat Yang Dikandung

Kandungan karbohidrat dari ubi kayu adalah tertinggi dibandingkan dengan jenis umbi-umbian lainnya dan hal ini dapat dilihat pada table 1.

Komposisi ubi kayu dipengaruhi oleh varietas, umur panen, lingkungan agronomi dan tempat tumbuh (Wijandi, 1976)

Pada umumnya kadar pati pada ubi kayu rata-rata 30 %. Kadar pati pada jenis ubi kayu pahit lebih tinggi dari pada ubi kayu manis, sehingga jenis ubi kayu


(12)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun,

yang pahit lebih banyak diperdagangkan untuk membuat tepung tapioca (Ciptadi, 1976)

Tabel 1. Komposisi Kimia Beberapa Jenis Umbi-umbian segar per 100 gram Yang dapat dimakan.

Bahan Symbol Ubi Kayu Putih Ubi Kayu Kuning

Kalori Protein Lemak Karbohidrat Kalsium Phospor Besi Vitamin A Vitamin B1 Vitamin C Air

Bagian yang dapat dimakan cal gr gr gr mg mg mg SI mg mg gr % 146,00 1,20 0,30 34,70 33,00 40,00 0,70 0,00 0,06 30,00 75,00 75,00 157,00 0,80 0,30 37,90 33 ,00 40,00 0,70 385,00 0,06 30,00 75,00 75,00

Sumber : Direktorat Gizi Dep.Kes R.I (1972), di dalam Ciptadi, 1976

2.2. Glukosa

Monosakarida yang terpenting dan mengandung enam atom karbon, dikenal dengan nama glukosa ( C6H12O6) dan dektrosa (C6H10O6), yang disebut juga gula


(13)

darah atau gula anggur. Glukosa merupakan salah satu aldoheksosa yang berisomer, yang merupakan unsur penting dalam alam, maupun karena peranannya yang penting dalam proses biologis. Glukosa adalah gula yang merupakan hasil ubahan semua karbohidrat dalam tubuh sebelum proses-proses oksidasi. Glukosa dijumpai dalam semua buah-buahan masak, dan terutama melimpah dalam anggur. Banyak karbohidrat lain misalnya : Maltosa, Sukrosa, dan pati menghasilkan glukosa bila dihidrolisa.

Reaksi kimia dan analisa menyatakan bahwa molekul glujkosa mengandung lima gugus hidroksil dan sebuah gugus aldehida yang direkatkan pada rantai enam karbon. Maka glukosa dapat dipaparkan oleh rumus bangun berikut ini. (Fessenden, 1999)

H

HOC2CHCHCHCHC=O

OH OHOHOH

Terdapat empat atom karbon kiral yang tidak sama dalam sebuah molekul glukosa, maka akan terdapat 24 atau 16 isomer optis yang mungkin, artinya glukosa biasa adalah salah satu dari enam belas aldoheksosa, semuanya mempunyai rumus bangun yang sama. Keenam belas gugus itu diisolasi dan diidentifikasi. Sifat-sifat glukosa :

Optis aktif

Memutar bidang polarisasi

Tidak berbau, berbhentuk kristal putih, rasanya manis

• Titik lebur (m.p) = 1460C

• Titik beku = 141,80C

• Berat molekul = 180,16 gr/mol

• Kapasitas panas = 0,29 kkal/kg0C

• Spesifik gravity (250C) = 1,544 (Perry, 1997)

Sirup glukosa (gula cair) banyak digunakan dalam pembuatan permen, es krim, manisan buah-buahan, campuran obat-obatan, campuran tembakau, campuran semir sepatu, pembuatan sabun, perekat dan sebagainya. Penggunaannya tergantung pada kadar dektrosa (D-Glukosa) dan kemurnian sirup.


(14)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun, 2.3. Pati

Pati adalah homopolimer dsari monosakarida yang merupakan sumber utama energi yang menyusun sebagian besar makanan. Berbagai jenis hasil pertanian digunakan sebagai sumber pati seperti ubi kayu, jagung, sagu, ubi jalar dan jenis umbi-umbian lainnya (Goutara dan Wijandi, 1975).

Pati tersusun dari unsure karbon, hydrogen dan oksigen dengan rumus kimia (C6H10O5)n. Struktur pati terdiri dari dua komponen yaitu amilosa 10 – 20 % dan amilopektin 80 – 90 %.

Amilosa merupakan komponen pati yang tidak larut dalam air dingin tetapi larut dalam air panas (60 – 800C), mempunyai berat molekul rata-rata 10.000 – 60.000 yang terdiri dari rantai satuan glukosa yang dihubungkan pada kedudukan atom karbon 1,4 oleh α - glukosida.

CH2OH CH2OH CH2OH

O O O

OH OH

O O O O

OH

OH OH

Gambar 1. Rumus Molekul Amilosa

Amilopektin adalah bagian pati yang tidak larut, mempunyai berat molekul rata-rata 60.000 – 1.000.000 yang terdiri dari rantai satuan glukosa yang dihubungkan pada kedudukan atom karbon dari rantai cabang 1,6 oleh ikatan α - glukosida (Holleman dan Aten, 1956; Mertz, 1960)


(15)

CH2OH H

H

n OH H

O

CH2OH H OH

CH2

H H H H

O O

n O n

OH H OH H

H OH H OH

Gambar 2 : Rumus Molekul Amilopektin

Komposisi Kimia Pati

MenurutBrautlecht (1953), komposisi kimia pati ubi kayu yang sudah diselidiki bersama Eynen – Lane dapat dilihat dalam table 3 berikut :

Tabel 3. Komposisi Tapioka Menurut Braautlecht

Kompaonen Hasil Analisis (%)


(16)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun,

Air Protein Lemak Abu Pati

9,00 – 18,00 0,30 – 1,00 0,10 – 0,40 0,10 – 0,80 81,00 – 89,00

11,30 0,50 0,10 0,90 88,01

Sumber : Brautlecht (1953)

Pada garis besarnya, proses pembuatan pati (tapioca) terdiri dari beberapa tahap (Brautlecht , 1953) :

a. Umbi ubi kayu dibuang kulit luarnya lalu dibersihkan

b. Pemarutan umbi, untuk memecahkan dinding sel agar butir pati di dalamnya dapat terlepas. Dalam pemarutan ini tidak semua sel-sel itu pecah oleh karena itu hasil parutan diremas kuat

c. Peremasan dan penyaringan dengan penambahan air, kemudian

pengendapan pati 24 jam di bak (panci). Pati yang mengendap di cuci beberapa kali dengan air sampai cairan menjadi jernih

d. Pengeringan dapat dilakukan di sinar matahari atau di alat pengering, untuk mencegah perkembangan mikroba

e. Menggiling pati yang masih kasar dan pengayakan

Menurut Brautlecht (1953), dalam hal pengeringan tepung tapioka kadar air yang terbaik berada diantara 10 – 14 %. Tetapi pada umumnya untuk pengeringan tepung tapioka ditetapkan sampai kadar air 14,55 – 17,5 %. Kadar air yang tinggi akan memudahkan tumbuhnya jamur dan berbau sehingga tepung menjadi rusak dan mutunya menurun.

Pati dapat dimodifikasi melalui cara hidrolisis, oksidasi, cronslinking dan subtitusi. Produk-produk modifikasi tersebut diantaranya thin boiling starch, pati teroksidasi, pregelatinized starch dan glukosa (Tjokroadikoesoemo, 1986).


(17)

Kalsium Carbonat adalah suatu campuran kimia yang dengan rumus kimianya adalah CaCO3. Kalsium Carbonat merupakan suatu unsur yang umum dapat ditemui dalam semua bagian didunia , yang mana komponen utamanya terdiri dari kulit kerang dan organisme – organisme laut lainnya, dan cangkang telur. Kalsium karbonat dipakai dalam bahan ramuan kapur untuk pertanian dan pada umumnya mengandung mineral. Pada obat – obatan biasanya digunakan sebagai zat kapur dan antasida.

2.1.4. Asam Laktat

Asam laktat juga disebut dengan asam susu atau cuka susu atau menurut IUPAC adalah cuka 2- hydroxypropanoic dan berperan dalam beberapa proses – proses biokimia. Asam laktat ditemui pertama kali pada tahun 1780 oleh satu Ahli kimia bangsa swedia,yaitu Carl Wilhelm, Scheele, dan merupakan salah satu asam karbon dengan satu rumusan kimia dari C3H6O3. Asam laktat mempunyai kelompok hidroksit sampai gugus karboksil, pembuatan asam laktat cuka hidroksi alfa (AHA).

Asam laktat/asam susu bersifat kiral dan mempunyai dua isomer optis. Salah satu dikenal sebagai cuka L-(+)-lactic atau (cuka S)-lactic. Cuka L-(+)-Lactic adalah isometri secara biologi.

2.2. Sifat Bahan

2.2.1. Asam Klorida a. Sifat Fisika :

 Berat molekul : 36,7 gr/ml

 Titik didih (760 mmHg) : - 85,0230C

 Titik beku pada tekanan saturation (tripel point) : -114,190C

 Densitas gas, gr/ml

Pada 200C : 0,001526 Pada 250C : 0,001500

 Indeks reaktif gas

nD20 pada 1 atm : 0,000415 nD25 pada 1 atm : 0,000408 2.2.2. Natrium Hidroksida (NaOH)

a. Sifat Fisika :

 Warna : PUTIH


(18)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun,

 Spesifik grafity : 2,130

 Titik didih (760 mmHg) : 13900C

 Titikleleh (760 mmHg) : 318,40C

 Viskositas : 1,103 cP

 Entropi ( S) : 64,46 J/K mol

 Kapasitas kalor (Cp) : 59,54 J/K mol

 Entalpi pembentukan ( Hf), 250

C : -425,61 KJ/mol

 Energi bebas Gibbs pembentukan ( Gf), 250

C : - 379,49 KJ/mol

(Perry, 1997)

b. Sifat Kimia :

 Basa kuat

 Larut dalam air

 Zat yang sangat reaktif

 Bereaksi dengan asam menghasilkan garam dan air Reaksi

NaOH + HCl NaCl + H2O (Perry, 1997)

2.2.3. Natrium Klorida (NaCl) a. Sifat Fisika :

 Berat molekul : 58,45 gr/mol

 Indeks reaktif : 1,544

 Spesifik gravity : 2,163

 Titik leleh (760 mmHg) : 800,40C

 Titik didih (760 mmHg) : 14130C

 Kapasitas kalor (Cp) : 50,50 J/K mol

 Entropi (∆S)

NaCl(s) : 72,13 J/K mol NaCl(aq) : 115,0 J/K mol

 Entalpi pembentukan (∆Hf), 250C NaCl(s) : -411,15 KJ/mol NaCl(aq) : -407,1 KJ/mol

 Energi bebas Gibbs pembentukan (∆Gf),250C NaCl(s) : -348,14 KJ/mol


(19)

b. Sifat Kimia :

 Larut dalam air

 Senyawa yang tersusun atas Na dan Cl

 Tidak bereaksi dengan asam maupun basa (Perry, 1997) 2.2.4. Air (H2O)

a. Sifat Fisika :

 Berat molekul : 18,015 gr/mol

 Titik didih (760 mmHg) : 1000C

 Titik beku (760 mmHg) : 00C

 Densitas : 0,998 gr/ml

 Tegangan permukaan : 71,97 dyne/cm

 Indeks bias : 1,3325 nD

 Viskositas : 8,949 mP

 Konstanta disosiasi ionic : 10-14

 Panas ionisasi : 55,71 KJ/mol

 Panas pembentukan (180C) : 285,89 KJ/mol

 Panas fusi (00C) : 6,010 KJ/mol

 Panas penguapan (1000C) : 40,6150C

 Konstanta dielektrik : 77,94

 Kecepatan suara : 1496,3 m/det

 Komprerssibilitas isothermal : 45,6 x 10-6

 Poanas spesifik : 4,179 J/gr0C

 Konduktivitas thermal (200C) : 5,98 x 10-3 watt/cm2 (0C/cm)

 Konduktivitas elektrik : < 10-8 ohm-1 cm-1

 Kapasitas kalor (Cp), 250C H2O (s) : 75,291 J/K mol H2O(g) : 33,58 J/K mol

 Entropi (∆S), 250C

H2O(s) : 69,91 J/K mol H2O(g) : 188,83 J/K mol

 Entalpi pembentukan (∆Hf), 250C H2O(s) : -285,83 KJ/mol H2O(g) : -241,82 KJ/mol


(20)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun,  Energi bebas Gibbs pembentukan (∆Gf), 250C

H2O(s) : -237,83 KJ/mol H2O(g) : -228,57 KJ/mol

 Entalpi peleburan, 250C : 6,008 KJ/mol

 Entalpi penguapan, 250C : 40,656 KJ/mol (Kirk Othmer, 1960) b. Sifat Kimia :

 Pelarut netral

 Senyawa yang tersusun atas H2 dan O2

2H2 + O2 2H2O

 Senyawa polar karena memiliki pasangan electron bebas

 Bereaksi dengan basa kuat dan asam kuat

 Bereaksi dengan logam ( Kirk Othmer, 1960)

2.3. Deskripsi Proses

Pabrik Kalsium laktat ini direncanakan menggunakan proses hidrolisa, dengan bahan pertimbangan sebagai berikut :

-. Prosesnya lebih mudah dan sederhana

-. Dapat menghasilkan produk yang dapat bersaing di pasar industri

-. Hasil samping berupa pati yang tidak diolah tapi langsung dibuang menjadi limbah

Adapun tahapan proses pembuatan kalsium laktat ini sebagai berikut : 2.3.1. Tahap awal

2.3.1.1.Penghancuran ubi kayu

Ubi kayu yang telah dikupas dimasukkan ke dalam gudang bahan baku. Karen bentuknya berupa padatan maka perlu dihancurkan. Ubi kayu dihancurkan dengan mesin penghancur dan menghasilkan serbuk pati yang masih mengandung banyak air.

2.3.2. Tahap Pembuatan 2.3.2.1.Proses hidrolisa

Serbuk pati ubi kayu banyak mengandung air (62,5 %) yang diumpankan ke dalam reactor hidrolisa. Karbohidrat yang dikandung serbuk pati ubi kayu berupa polihidrat (pati). Pati dapat dihidrolisa dalam suasana asam menghasilkan glukosa. (Slamet sudarmadji, 1989)


(21)

HCl

(C6H10O5)n (C6H12O6)n

pati nH2O glukosa

Pada unit ini ditambahkan HCl sebagai katalisator dengan perbandingan 4 : 1 dengan bahan baku (4 liter HCl/1 kg ubi kayu) (Ponten Naibaho, 1983). Proses dapat berlangsung cepat jika dipanaskan hingga 800C. Pada proses ini konversi reaksi sebesar 80 %. (Ponten Naibaho, 1983)

Sebelum masuk ke proses selanjutnya, produk yang dihasilkan didinginkan terlebih dahulu untuk keamanan proses selanjutnya, dengan menggunakan cooler (350C, 1 atm)

2.3.2.2.Proses Pemisahan

Pada proses ini, glukosa akan dipisahkan dari pati ubi kayu yang tidak terhidrolisa. Fasa yang tidak terhidrolisa berupa lemak, protein, dan abu berbentuk padatan dipisahkan dengan sentrifugal, alat ini bekerja secara kontinu dengan effisiensi 90 % (Perry, 1997). Padatan akan mengendap dan dialirkan ke bak penampungan dan selanjutnya dibuang, sedangkan glukosa dialirkan ke reaktor netralisasi.

2.3.2.3.Penetralan

Bertujuan untuk menetralkan kandungan HCl dalam glukosa dengan penambahan NaOH 1 N.

Reaksi yang terjadi :

HCl + NaOH NaCl + H2O

HCl merupakan asam kuat dan NaOH juga merupakan basa kuat sehingga bereaksi menghasilkan garam, dengan konversi 99 % dan selanjutnya larutan glukosa (0,0028 µm) dipisahkan dari NaCl (0,00076 µm). Pemisahaan dilakukan dengan menggunakan membran reverse osmosis, pemisahan ini berdasarkan perbedaan ukuran molekul dengan effisiensi 97 % (Perry, 1997). Larutan NaCl yang telah terpisah dialirkan ke bak penampungan. 2.3.2.4.Evaporasi

Larutan glukosa yang telah terpisah akan diuapkan untuk menghilangkan air yang terkandung di dalamnya secara single effect evaporation pada suhu 1060C dan tekanan 1 atm, dengan effisiensi 80 % (Perry, 1997). Uap yang berasal dari steam dikeluarkan sebagai kondensat, sedangkan air dan sisa


(22)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun,

HCl yang berasal dari reaktor netralisasi yang terkandung dalam glukosa keluar sebagai uap dari evaporator. Glukosa yang keluar dari evaporator selanjutnya dialirkan mixer.

2.3.3. Pencampuran

Di dalam mixer ditambahkan bahan pendukung seperti CaCO3, serbuk susu dan (NH4)2HPO4. Setelah dilakukan pencampuran, hasilnya dialirkan ke fermentor.

2.3.4. Fermentasi

Didalam fermentor dilakukan fermentasi untuk menghasilkan asam laktat dengan bantuan bakteri yang telah dibiakan di culture tank.

2.3.5. Sterilisasi

Didalam tangki steril, semua zat yang telah fermentasi kemudian disterilkan untuk membunuh bakteri yang tidak diinginkan.Setelah disterilkan, maka produk dialirkan ke decanter untuk memekatkan produk dan dialirkan kembali ke cooler untuk menghilangkan kandungan air. Produk yang telah terpisah dari air dialirkan kembali ke rotary cooler. Setelah menjadi serbuk, produk siap dipacking dan disimpan ke gudang produksi.


(23)

BAB III

NERACA MASSA

Kapasitas Bahan Baku = 10.000 ton/tahun = 10.000.000 kg/tahun

Operasi pabrik = 300 hari/tahun, 24 jam/hari

Produksi pabrik = 10.000.000 x 1/300 x 1/24

= 1388,8889 kg/jam

Basis perhitungan = 1 jam operasi

3.1. Neraca Massa Reaktor Hidrolisa (R – 01) Tabel A.1 Neraca Massa Reaktor Hidrolisa (R-01)

Komponen Masuk (kg/jam) Keluar (kg/jam)

Alur 2 Alur 3 Alur 4

Karbohidrat Protein Lemak Abu Air HCl Glukosa

481,9444 16,6667 4,1667 18,0556

868,0556 5074,1214

548,0480

96,3889 16,6667 4,1667 18,0556 5899,3375 548,0480 428,3951

Sub Total 1388,8889 5622,1695 7011,0584

Total 7011,0584 7011,0584


(24)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun, Tabel A.2 Neraca Massa Sentrifuge -01 (SF-01)

Komponen Masuk (kg/jam) Keluar (kg/jam)

Alur 5 Alur 6 Alur 7

Karbohidrat Protein Lemak Abu Air HCl Glukosa 96,3889 16,6667 4,1667 18,0556 5899,3375 548,0480 428,3951 96,3889 16,6667 4,1667 18,0556 5899,3375 548,0480 428,3951 5309,4037 493,2432 385,5556

Sub Total 7011,0584 822,8558 6188,202

Total 7011,0584 7011,0584

3.3. Neraca Massa Netralizer (R – 02) Tabel A-3 Neraca Massa Netralizer (R-02)

Komponen Masuk (kg/jam) Keluar (kg/jam)

Alur 7 Alur 8 Alur 9

Air HCl Glukosa NaOH NaCl 5309,4037 493,2432 385,5556 13323,5270 535,1351 18873,7416 4,9324 385,5556 782,6351

Sub Total 6188,2025 13858,6622 20046,8647

Total 20046,8647 20046,8647

3.4. Neraca Massa Membran Reverse Osmosis (MBO) Tabel A.4 Neraca Massa Membran Reverse Osmosis (MBO)

Komponen Masuk (kg/jam) Keluar (kg/jam)

Alur 9 Alur 10 Alur 11

Air HCl Glukosa NaCl 18873,7416 4,9324 385,5556 782,6351 18307,5293 4,9324 782,6351 566,2122 0,1480 385,5556

Sub Total 20046,8647 19094,9489 951,9158

Total 20046,8647 20046,8647


(25)

Tabel A.5 Neraca Massa Evaporator (E - 01)

Komponen Masuk (kg/jam) Keluar (kg/jam)

Alur 11 Alur 12 Alur 13

Air HCl Glukosa NaCl 566,2122 0,1480 385,5556 560,5501 0,1480 0,0566 385,5556

Sub Total 951,9158 566,3036

Total 951,9158 951,9158

3.6. Neraca Massa Mixer – 01 (M – 01) Tabel A.6 Neraca Massa Mixer-01 (M-01)

Komponen Masuk (kg/jam) Keluar (kg/jam)

Alur 14 Alur 15 Alur 16

Glukosa CaCO3 Serbuk susu (NH4)2HPO4 Air 385,5556 0,0566 385,5556 257,0370 9,6389 6,4259 1911,7130

Sub Total 385,6122 2570,3704

Total 2570,3704 2570,3704

3.7. Neraca Massa Fermentor (F – 01) Tabel A-7 Neraca Massa Fermentor (F-01)

Komponen

Masuk (kg/jam) Keluar (kg/jam) Alur 16

+ hasil fermentasi

Alur 17 Alur 18

CaCO3

Kalsium laktat H2CO3

Glukosa Serbuk susu (NH4)2HPO4 Air Bakteri biakan 257,0370 385,5556 9,6389 6,4259 1911,7130 43,0537 466,4837 132,6697 0,3856 9,6389 6,4259 1911,7130 257,0370

Sub Total 2570,3704 2827,4075


(26)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun, 3.8. Neraca Massa Decanter – 01 (D – 01)

Tabel A.8 Neraca Massa Decanter -01 (D-01)

Komponen

Masuk (kg/jam) Keluar (kg/jam) Alur 18 +

hasil reaksi Alur 19 Alur 20 Alur 23

CaCO3 Kalsium laktat H2CO3 Glukosa Serbuk susu (NH4)2HPO4 Air Bakteri biakan Ca(OH)2 43,0537 466,4837 132,6697 0,3856 9,6389 6,4259 1911,7130 128,5185 2344,1660 174,1824 257,0370 46,6484 0,0386 9,6389 6,4259 433,2913 128,5185 15,8348 419,8353 0,3470 3899,6217

Sub Total 2698,889 2518,3484 897,4334 4319,8040

Total 5217,0714 5217,0714

3.9. Neraca Massa Filter Press – 01 (FP – 01) Tabel A.9 Neraca Massa Filter Press-01 (FP-01)

Komponen Masuk (kg/jam) Keluar (kg/jam)

Alur 20 Alur 21 Alur 22

CaCO3

Kalsium laktat Glukosa Serbuk susu (NH4)2HPO4 Air Bakteri biakan Ca(OH)2 257,0370 46,6484 0,3856 9,6389 6,4259 433,2913 128,5185 15,8348 257,0370 0,9330 0,0008 9,6389 6,4259 8,6658 128,5185 15,8348 45,7154 0,0378 424,6255

Sub Total 897,4334 427,0547 470,3787

Total 897,4334 897,4334

3.10. Neraca Massa Evaporator – 02 (E – 02) Tabel A.10 Neraca Massa Evaporator (E-02)

Komponen Masuk (kg/jam) Keluar (kg/jam)

Alur 11 Alur 12 Alur 13

Kalsium laktat Glukosa Air

465,5507 0,3848

4324,2472 4323,8147

465,5507 0,3848 0,4324

Sub Total 4790,1826 4323,8147 466,3679


(27)

3.11. Neraca Massa Spray Dryer (SP) Tabel A.11 Neraca Massa Spray Dryer (SP)

Komponen Masuk (kg/jam) Keluar (kg/jam)

Alur 30 Alur 31 Alur 32

Kalsium laktat Glukosa Air

465,5507 0,3848

0,4324 0,4324

465,5507 0,3848

Sub Total 466,3679 0,4324 465,9355

Total 466,3679 466,3679

BAB IV NERACA PANAS

Basis perhitungan : 1 jam operasi Suhu referensi : 250C = 2980K Satuan panas : Kilokalori (kka l)

4.1. Reaktor Hidrolisa (R – 01)

Tabel B-1 Panas masuk pada 30 0C alur 2 R-01 Komponen F

(kg/jam)

BM (Kg/kmol)

N (kmol/jam)

Cp (Kkal/kmol.K)

dT (0K)

dQ/dt (Kkal/jam)

Karbohidrat 481,9444 162 2,9750 47,12 5 700,9100

Protein 16,6667 146 0,1142 90,58 5 51,7121

Lemak 4,1667 172 0,0242 56,88 5 6,8825

Abu 18,0556 24 0,7523 5,88 5 22,1176

Air 868,0556 18 48,2253 17,99 5 4337,8657


(28)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun, Tabel B-2 Panas masuk pada 30 0C alur 3 R-01

Komponen F (kg/jam) BM (Kg/kmol) N (kmol/jam) Cp (Kkal/kmol.K) dT (0K)

dQ/dt (Kkal/jam)

HCl 548,0480 36,5 15,0150 21,24 5 1594,5944

Air 5074,1214 18,0 281,8956 17,99 5 25356,5122

Total 26951,1066

Tabel B-3 Panas keluar pada 80 0C alur 4 R-01 Komponen F

(kg/jam) BM (Kg/kmol) N (kmol/jam) Cp (Kkal/kmol.K dT (0K)

dQ/dt (Kkal/jam)

Karbohidrat 96,3889 162,0 0,5950 47,12 55 1542,0020

Protein 16,6667 146,0 0,1142 90,58 55 568,9330

Lemak 4,1667 172,0 0,0242 56,88 55 75,7073

Abu 18,0556 24,0 0,7523 5,88 55 243,2938

Air 5899,3375 18,0 327,7410 17,99 55 324283,3325

HCl 548,0480 36,5 15,0150 31,60 55 26096,0700

Glukosa 428,3951 180,0 2,3800 54,04 55 7073,8360

Total 359883,1746

4.2. Cooler – 01 (C – 01)

Tabel B-4 Panas keluar pada 30 0C alur 5 C-01 Komponen F

(kg/jam) BM (Kg/kmol) N (kmol/jam) Cp (Kkal/kmol.K) dT (0K)

dQ/dt (Kkal/jam)

Karbohidrat 96,3889 162,0 0,5950 47,12 5 140,1820

Protein 16,6667 146,0 0,1142 90,58 5 51,7212

Lemak 4,1667 172,0 0,0242 56,88 5 6,8825

Abu 18,0556 24,0 0,7523 5,88 5 22,1176

Air 5899,3375 18,0 327,7410 17,99 5 29480,3030

HCl 548,0480 36,5 15,0150 21,24 5 1594,5930

Glukosa 428,3951 180,0 2,3800 54,04 5 643,0760

Total 31938,8753


(29)

Tabel B-5 Panas masuk pada 30 0C alur 7 R-02 Komponen F

(kg/jam) BM (Kg/kmol) N (kmol/jam) Cp (Kkal/kmol.K) dT (0K)

dQ/dt (Kkal/jam)

HCl 493,2432 36,5 13,5135 21,24 5 1435,1337

Glukosa 385,5556 180,0 2,1420 54,04 5 578,7618

Air 5309,4037 18,0 294,9669 17,99 5 26532,2702

Total 28546,1670

Tabel B-6 Panas masuk pada 30 0C alur 8 R-02 Komponen F (kg/jam) BM

(Kg/kmol) N (kmol/jam) Cp (Kkal/kmol.K) dT (0K)

dQ/dt (Kkal/jam)

NaOH 535,1351 40,0 13,3784 38,00 5 2541,8917

Air 13323,5270 18,0 740,1959 17,99 5 66580,6252

Total 69122,5169

Tabel B-7 Panas keluar pada 30 0C alur 9 R-02 Komponen F

(kg/jam) BM (Kg/kmol) N (kmol/jam) Cp (Kkal/kmol.K) dT (0K)

dQ/dt (Kkal/jam)

HCl 4,9324 36,5 0,1351 21,24 5 14,3513

Glukosa 385,5556 180,0 2,1420 54,04 5 578,7618

Air 18873,7416 18,0 1048,5412 17,99 5 94316,2809

NaCl 782,6351 58,5 13,7838 15,90 5 1063,5810

Total 95972,9750

4.4. Evaporator (E – 01)

Tabel B-8 Panas masuk pada 30 0C alur 11 E-01 Komponen F

(kg/jam) BM (Kg/kmol) N (kmol/jam) Cp (Kkal/kmol.K) dT (0K)

dQ/dt (Kkal/jam)

Glukosa 385,5556 180,0 2,1420 54,04 5 578,7684

HCl 0,1480 36,5 0,0041 21,24 5 0,4306

Air 566,2122 18,0 31,4562 17,99 5 2829,4882

Total 3409,1089


(30)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun, Komponen F

(kg/jam) BM (Kg/kmol) N (kmol/jam) Cp (Kkal/kmol.K) dT (0K)

dQ/dt (Kkal/jam)

HCl 0,1480 36,5 0,0041 38,460 82 12,9303

Air 560,5501 18,0 31,1417 8,025 82 20492,7957

Total 20505,5651

Tabel B-10 Panas keluar pada 107 0C alur 13 E-01 Komponen F

(kg/jam) BM (Kg/kmol) N (kmol/jam) Cp (Kkal/kmol.K) dT (0K)

dQ/dt (Kkal/jam)

Glukosa 385,5556 180,0 2,1420 54,040 82 9498.7191

Air 0,0566 18,0 0,0031 8,025 82 2,0692

Total 9500,7883

4.5. Cooler – 02 (C – 02)

Tabel B-11 Panas keluar pada 30 0C alur 14 C-02 Komponen F

(kg/jam) BM (Kg/kmol) N (kmol/jam) Cp (Kkal/kmol.K) dT (0K)

dQ/dt (Kkal/jam)

Glukosa 385,5556 180,0 2,1420 54,04 5 579,1902

Air 0,0566 18,0 0,0031 17,99 5 0,2828

Total 579,4730

4.6. Fermentor (F – 01)

Tabel B-12 Panas masuk pada 30 0C alur 16 F-01 Komponen F

(kg/jam) BM (Kg/kmol) N (kmol/jam) Cp (Kkal/kmol.K) dT (0K)

dQ/dt (Kkal/jam)

Glukosa 385,5556 180 2,1413 54,04 5 578,5793

(NH4)2HPO4 6,4259 132 0,0487 51,60 5 12,5597

CaCO3 257,0370 100 2,5704 20,42 5 262,4348

Air 1911,7130 18 106,2063 17,99 5 9553,2547

Total 10449,8505


(31)

Komponen F (kg/jam) BM (Kg/kmol) N (kmol/jam) Cp (Kkal/kmol.K) dT (0K)

dQ/dt (Kkal/jam)

Ca-laktat 466,4837 218 2,1398 99,12 20 4242,0059

Glukosa 0,3856 180 0,0021 54,04 20 2,4867

(NH4)2HPO4 6,4259 132 0,0487 51,60 20 50,2389

CaCO3 43,0537 100 0,4305 20,42 20 175,8313

H2CO3 132,6697 62 2,1398 30,40 20 1301,0190

Air 1911,7130 18 106,2063 17,99 20 38213,3586

Total 43984,9404

4.7. Tangki Steril (ST – 01)

Tabel B-14 Panas keluar pada Alur 19 82 0C ST-01 Komponen F

(kg/jam) BM (Kg/kmol) N (kmol/jam) Cp (Kkal/kmol.K) dT (0K)

dQ/dt (Kkal/jam)

Ca-laktat 466,4837 218 2,1398 99,12 57 12089,7168

Glukosa 0,3856 180 0,0021 54,04 57 7,0871

(NH4)2HPO4 6,4259 132 0,0487 51,60 57 143,1807

CaCO3 43,0537 100 0,4305 20,42 57 501,1119

H2CO3 132,6697 62 2,1398 30,40 57 3707,9041

Air 1911,7130 18 106,2063 17,99 57 108363,2228

Total 124812,2234

4.8. Cooler – 03 (C – 03)

Tabel B-15 Panas keluar pada 30 0C C-03 Komponen F

(kg/jam) BM (Kg/kmol) N (kmol/jam) Cp (Kkal/kmol.K) DT (0K)

dQ/dt (Kkal/jam)

Ca-laktat 466,4837 218 2,1398 99,12 5 1060,5015


(32)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun,

(NH4)2HPO4 6,4259 132 0,0487 51,60 5 12,5597

CaCO3 43,0537 100 0,4305 20,42 5 43,9578

H2CO3 132,6697 62 2,1398 30,40 5 325,2547

Air 1911,7130 18 106,2063 17,99 5 10615,4119

Total 12058,3073

BAB V

SPESIFIKASI PERALATAN

1. Gudang Bahan Baku (G-01)

Fungsi :Tempat menyimpan bahan baku ubi kayu selama 3 hari Bentuk : Prisma segi empat beraturan

Lebar gudang = 3,7613 m

Panjang gudang = 7,5227 m

Tinggi gudang = 3,7613 m

Luas gudang = 27,1794 m2

2. Belt Conveyor (BC-01)

Fungsi : Untuk mengangkut bahan baku ubi kayu dari gudang ke mesin Penghancur

Panjang belt, P = 20 ft Tinggi belt, Z = 3 ft Lebar belt, L = 14 in


(33)

Kecepatan, V = 200 ft/menit Luas belt, A = 0,11 ft2

Daya, P = 2 HP

3. Mesin Penghancur

Fungsi : Untuk menghancurkan ubi kayu sebelum ke Reaktor (R-01) Jenis : Ball Mill

Luas mesin penghancur = 3 ft x 2 ft

Kecepatan = 3 rpm

Berat bola = 0,85 ton

Daya, = 7 Hp

4. Belt Conveyor (BC-02)

Fungsi : Untuk mengangkut bahan baku ubi kayu dari mesin Penghancur ke Reaktor (R-01)

Laju alir bahan masuk = 1388,8889 kg/jam Faktor keamanan 20%

Panjang belt, P = 20 ft Tinggi belt, Z = 3 ft Lebar belt, L = 14 in

Kecepatan, V = 200 ft/menit Luas belt, A = 0,11 ft2

Daya, P = 2 HP

5. Tangki Air (T-01)

Fungsi : Tempat penyimpanan air selama 7 hari

Jumlah : 1 buah

Tipe : Tangki berbentuk silinder, bagian bawah datar dan

tutup tutup datar Kondisi operasi : 30oC.1atm Spesifikasi Tangki


(34)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun, • Diameter tangki; Dt = 9,9296 m

• Tinggi Tangki; HT = 13,2395 m

• Tebal silinder; ts = ¾ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

6. Pompa Air (P-01)

Fungsi : Untuk mengalirkan air ke Mixer (M-01)

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya Pompa : 1/10 HP

Bahan konstruksi : Stainless steel Kondisi operasi : 30oC.1atm

7. Tangki HCl (T-02)

Fungsi : Tempat penyimpanan HCl selama 7 hari

Jumlah : 1 buah

Tipe : Tangki berbentuk silinder, bagian bawah datar dan

tutup tutup elipsoidal Kondisi operasi : 30oC.1atm

Spesifikasi Tangki

• Diameter tangki; Dt = 4,1506 m

• Tinggi Tangki; HT = 6,5877 m

• Tebal silinder; ts = ½ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

8. Pompa HCl (P-02)

Fungsi : Untuk mengalirkan HCl ke Mixer(M-01)

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya Pompa : 1/10 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm


(35)

9. Mixer (M-01)

Fungsi : Tempat pencampuran air dan HCl

Jumlah : 1 buah

Tipe : Tangki berbentuk silinder, bagian bawah datar dan

tutup elipsoidal Kondisi operasi : 30oC.1atm Spesifikasi Tangki

• Diameter tangki; Dt = 1,8325 m

• Tinggi Tangki; HT = 2,9014 m

• Tebal silinder; ts = ¼ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

• Diameter pengaduk = 1,8037 ft

• Daya motor = ¾ HP

• Tipe pengaduk = propeler

10. Pompa Mixer (P-03)

Fungsi : Untuk mengalirkan larutan HCl ke Reaktor(R-01)

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya Pompa : 1/10 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

11. Reaktor - 01 (R- 01)

Fungsi : Untuk mereaksikan karbohidrat dengan air untuk menghasilkan glukosa

Jumlah : 1 buah

Tipe : Tangki berbentuk silinder, bagian bawah dan

tutup elipsoidal Kondisi operasi : 30oC.1atm Spesifikasi Tangki


(36)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun, • Diameter tangki; Dt = 1,8493 m

• Tinggi Tangki; HT = 2,928 m

• Tebal silinder; ts = ¼ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

• Diameter pengaduk = 1,8202 ft

• Daya motor = ¾ HP

• Tipe pengaduk = propeler

12. Pompa Reaktor (P-04)

Fungsi : Untuk mengalirkan produk Reaktor ke Cooler-01

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya Pompa : 1/10 HP

Bahan konstruksi : Stainless steel Kondisi operasi : 30oC.1atm

13. Cooler (C-01)

Fungsi :Mendinginkan produk Reaktor –01 dari 800C jadi 300C Jenis : Shell and tube exchanger

Digunakan : 1-6 Shell and tube exchanger Luas perpindahan panas; A = 278,347 ft2

Jumlah tube = 20 buah

14. Pompa Cooler (P-05)

Fungsi : Untuk mengalirkan produk Cooler-01 ke

Sentrifugal

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya Pompa : 1/10 HP


(37)

Kondisi operasi : 30oC.1atm

15. Sentrifugal (SF-01)

Fungsi : Untuk memisahkan produk dari pengotornya

Jenis : Disk Bowl Centrifuge

Jumlah : 1 buah

Daya : 6 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

16. Pompa Bak Penampung – 01 (P-06)

Fungsi : Untuk mengalirkan produk samping dari

Sentrifugal ke Bak Penampung -01

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Bahan konstruksi : Stainless steel Kondisi operasi : 30oC.1atm

17. Bak Penampung – 01 (BP-01)

Fungsi : Untuk menampung produk samping dari Sentrifugal

Jumlah : 1 buah

Bentuk : Prisma segi empat beraturan

Bahan konnstruksi : Beton Kondisi operasi : 30oC.1atm

Lebar bak, l = 4,3216 m

Panjang bak, P = 8,6432 m

Tinggi bak, t = 4,3216 m

Luas bak, A = 37,3524 m2

18. Pompa Sentrifugal (P-07)

Fungsi : Untuk mengalirkan produk Sentrifugal ke

Netralizer

Tipe : Pompa sentrifugal


(38)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun,

Daya pompa : ½ HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

19. Tangki Air (T-03)

Fungsi : Tempat penyimpanan air selama 7 hari

Jumlah : 1 buah

Tipe : Tangki berbentuk silinder, bagian bawah datar dan

tutup tutup datar Kondisi operasi : 30oC.1atm

• Diameter tangki; Dt = 13,6989 m

• Tinggi Tangki; HT = 18,2652 m

• Tebal silinder; ts = 1 in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

20. Pompa Air (P-08)

Fungsi : Untuk mengalirkan air ke Mixer (M-02)

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya pompa : ½ HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

21. Tangki NaOH (T-04)

Fungsi : Tempat penyimpanan NaOH selama 7 hari

Jumlah : 1 buah

Tipe : Tangki berbentuk silinder, bagian bawah datar dan


(39)

Bahan : Stainless steel SA – 304 (Brownell & Young,1959)

Kondisi operasi : 30oC.1atm

• Diameter tangki; Dt = 4,0078 m

• Tinggi Tangki; HT = 6,3457 m

• Tebal silinder; ts = ½ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

22. Pompa NaOH (P-09)

Fungsi : Untuk mengalirkan NaOH ke Mixer (M-02)

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya pompa : 1/10 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

23. Mixer (M-02)

Fungsi : Tempat pencampuran air dan NaOH

Jumlah : 1 buah

Tipe : Tangki berbentuk silinder, bagian bawah datar dan

tutup elipsoidal Kondisi operasi : 30oC.1atm

• Diameter tangki; Dt = 8,1334 m

• Tinggi Tangki; HT = 3,9253 m

• Tebal silinder; ts = ¼ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

• Diameter pengaduk = 2,4400 ft

• Daya motor = 2 ½ HP

• Tipe pengaduk = propeler

24. Pompa Mixer - 02 (P-10)

Fungsi :Untuk mengalirkan larutan NaOH ke Netralizer


(40)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun,

Jumlah : 1 buah

Daya : ½ HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

25. Netralizer (R- 02)

Fungsi : Untuk menetralkan HCl dengan NaOH menjadi NaCl

Jumlah : 1 buah

Tipe : Tangki berbentuk silinder, bagian bawah,tutup elipsoidal Bahan : Stainless steel SA – 304 (Brownell & Young,1959) Kondisi operasi: 30oC.1atm

• Diameter tangki; Dt = 4,5163 m

• Tinggi Tangki; HT = 7,1508 m

• Tebal silinder; ts = ½ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

• Diameter pengaduk = 4,4451 ft

• Daya motor = 50 HP

• Tipe pengaduk = propeler

26. Pompa Netralizer (P-11)

Fungsi :Untuk mengalirkan produk Netralizer ke MRO

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya : ¼ HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

27. Membrance Reverse Osmosis (MRO)

Fungsi : Tempat pemisahan produk netralizer dan hasil samping


(41)

Tipe : Tangki berbentuk silinder horizontal, bagian bawah dan tutup tutup elipsoidal

Kondisi operasi : 30oC.1atm

• Diameter tangki; Dt = 1,0040 m

• Panjang Tangki; LT = 3,514 m

• Tebal silinder; ts = ¼ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

28. Pompa Bak Penampung (P-12)

Fungsi :Untuk mengalirkan hasil samping MRO ke

Bak penampung

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya pompa : ¾ HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

29. Bak Penampung – 02 (BP-02)

Fungsi : Untuk menampung produk samping dari MRO

Jumlah : 1 buah

Bentuk : Prisma segi empat beraturan

Bahan konnstruksi : Beton Kondisi operasi : 30oC.1atm

Lebar bak, l = 11,7795 m

Panjang bak, P = 23,5591 m

Tinggi bak, t = 5,8898

Luas bak, A = 277,5141 m2

30. Pompa MRO (P-13)

Fungsi :Untuk mengalirkan hasil samping MRO ke

bakpenampung


(42)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun,

Jumlah : 1 buah

Daya : 1/10 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

31. Evaporator(E-01)

Fungsi : Tempat menguapkan air dalam produk

Jumlah : 1 buah

Jenis : Single Effec Evaporator

Bentuk : Tangki berbentuk silinder, bagian bawah dan tutup tutup elipsoidal

Bahan : Stainless steel SA – 304 (Brownell & Young,1959)

• Diameter tangki; Dt = 0,8497 m

• Tinggi Tangki; HT = 2,5492 m

• Tebal silinder; ts = ¼ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

• Luas perpindahan panas = 45,7623 ft2

• Jumlah tube = 7 tube

32. Pompa Evaporator (P-14)

Fungsi :Untuk mengalirkan produk E-01 ke Cooler (C-02)

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya pompa : 1/10 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

33. Cooler (C-02)

Fungsi :Mendinginkan produk E – 01 dari 1070C jadi 300C Jenis : Shell and tube exchanger

Digunakan : 1-4 Shell and tube exchanger Luas perpindahan panas; = 46,7166ft2


(43)

34. Pompa Cooler - 02 (P-15)

Fungsi :Untuk mengalirkan produk C-02 ke Mixer (M-03)

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya Pompa : 1/10 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

35. Mixer (M-03)

Fungsi : Tempat pencampuran nutrient bakteri dan umpan

Fermentor

Jumlah : 1 buah

Tipe : Tangki berbentuk silinder, bagian bawah datar dan

tutup elipsoidal Kondisi operasi : 30oC.1atm

• Diameter tangki; Dt = 1,4165 m

• Tinggi Tangki; HT = 2,2428 m

• Tebal silinder; ts = ¼ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

• Diameter pengaduk = 1,3942 ft

• Daya motor = ¼ HP

• Tipe pengaduk = propeler

36. Pompa Mixer (P-16)

Fungsi :Untuk mengalirkan produk Mixer ke Fermentor

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya pompa : ¼ HP


(44)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun,

Kondisi operasi : 30oC.1atm

37. Fermentor (F-01)

Fungsi : Tempat produksi calsium laktat

Jumlah : 1 buah

Tipe : Tangki berbentuk silinder, bagian bawah dan

tutup elipsoidal

Bahan : Stainless steel SA – 304 (Brownell & Young,1959)

Kondisi operasi : 45oC.1atm

• Diameter tangki; Dt = 8,7932 m

• Tinggi Tangki; HT = 8,5294 m

• Tebal silinder; ts = ½ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

• Diameter pengaduk = 11,5395 ft

• Daya motor = 305 HP

• Tipe pengaduk = Multi blade impeller

38. Pompa Fermentor (P-17)

Fungsi :Untuk mengalirkan produk Fermentor ke Sterilisasi

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya pompa : 1/10 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 45oC.1atm

39. Tangki Sterilisasi (ST)

Fungsi : Tempat sterilisasi produk fermentor dari bakteri

Jumlah : 1 buah

Tipe : Tangki berbentuk silinder, bagian bawah datar dan

tutup elipsoidal menggunakan pengaduk

Bahan : Stainless steel SA – 304 (Brownell & Young,1959)


(45)

• Diameter tangki; Dt = 1,4517 m

• Tinggi Tangki; HT = 2,2985 m

• Tebal silinder; ts = ¼ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

• Diameter pengaduk = 1,4288 ft

• Daya motor = ¼ HP

• Tipe pengaduk = propeler

40. Pompa Tangki Sterilisasi (P-18)

Fungsi :Untuk mengalirkan produk Tangki Sterilisasi ke Cooler-03

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya pompa : 1/10 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 84oC.1atm

41. Cooler (C-03)

Fungsi :Mendinginkan produk ST – 01 dari 820C jadi 300C Jenis : Shell and tube exchanger

Digunakan : 1-2 Shell and tube exchanger Luas perpindahan panas; A = 176,7202 ft2

Jumlah tube = 18 tube

42. Pompa Cooler (P-18)

Fungsi :Untuk mengalirkan produk C – 03 ke Decanter

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya pompa : 1/10 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm


(46)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun, 43. Tangki Air (T-05)

Fungsi : Tempat penyimpanan air selama 7 hari

Jumlah : 1 buah

Tipe : Tangki berbentuk silinder, bagian bawah datar dan

tutup tutup datar Kondisi operasi : 30oC.1atm

• Diameter tangki; Dt = 7,6761 m

• Tinggi Tangki; HT = 10,2348 m

• Tebal silinder; ts = ½ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

44. Pompa Air (P-19)

Fungsi : Untuk mengalirkan air ke Mixer (M-04)

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya pompa : 1/10 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

45. Tangki Ca(OH)2 (T-06)

Fungsi : Tempat penyimpanan Ca(OH)2 selama 7 hari

Jumlah : 1 buah

Tipe : Tangki berbentuk silinder, bagian bawah datar dan

tutup tutup elipsoidal Kondisi operasi : 30oC.1atm

• Diameter tangki; Dt = 3,2253 m

• Tinggi Tangki; HT = 5,1067 m

• Tebal silinder; ts = ¼ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun


(47)

Fungsi : Untuk mengalirkan Ca(OH)2 ke Mixer(M-04)

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya pompa : 1/10 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

47. Mixer (M-04)

Fungsi : Tempat pencampuran air dan Ca(OH)2

Jumlah : 1 buah

Tipe : Tangki berbentuk silinder, bagian bawah datar dan

tutup elipsoidal

Bahan : Stainless steel SA – 304 (Brownell & Young,1959)

Kondisi operasi : 30oC.1atm

• Diameter tangki; Dt = 1,424 m

• Tinggi Tangki; HT = 2,255 m

• Tebal silinder; ts = ¼ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

• Diameter pengaduk = 1,4016 ft

• Daya motor = ¼ HP

• Tipe pengaduk = propeler

48. Pompa Mixer (P-21)

Fungsi : Untuk mengalirkan larutan Ca(OH)2 ke Decanter

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya pompa : 1/10 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

49. Decanter (DC-01)


(48)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun,

Jumlah : 1 buah

Tipe : Tangki berbentuk silinder, bagian bawah datar dan

tutup tutup elipsoidal Kondisi operasi : 30oC.1atm

• Diameter tangki; Dt = 1,4531 m

• Tinggi Tangki; HT = 2,6641 m

• Tebal silinder; ts = ¼ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

50. Pompa Decanter ke Filter Press (P-22)

Fungsi :Untuk mengalirkan produk Decanter ke Filter Press

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya pompa : 1/10 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

51. Pompa Decanter ke Evaporator (P-23)

Fungsi :Untuk mengalirkan produk Decanter ke Evaporator

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya pompa : 1/10 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

52. Filter Press (FP-02)

Fungsi : Tempat pemisahan produk dan produk samping


(49)

Tipe : Plate and Frame Filter Press

Luas filter : 4,5456 ft2

53. Pompa Filter Press ke Bak Penampung (P-24)

Fungsi :Untuk mengalirkan produk Filter Press ke Bak Penampung

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya pompa : 1/10 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

54. Bak Penampung – 03 (BP-03)

Fungsi : Untuk menampung produk samping dari MRO

Jumlah : 1 buah

Bentuk : Prisma segi empat beraturan

Bahan konnstruksi : Beton Kondisi operasi : 30oC.1atm

Lebar bak, l = 3,7516 m

Panjang bak, P = 7,5033 m

Tinggi bak, t = 3,7516m

Luas bak, A = 28,1493 m2

55. Pompa Filter Press ke Evaporator -02 (P-25)

Fungsi :Untuk mengalirkan produk Filter Press ke Evaporator

Tipe : Pompa sentrifugal

Jumlah : 1 buah

Daya pompa : 1/10 HP

Bahan konnstruksi : Stainless steel Kondisi operasi : 30oC.1atm

56. Evaporator(E-02)

Fungsi : Tempat menguapkan air dalam produk

Jumlah : 1 buah

Jenis : Single Effec Evaporator


(50)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun,

tutup tutup elipsoidal

Bahan : Stainless steel SA – 304 (Brownell & Young,1959)

Kondisi operasi : 107oC.1atm

• Diameter tangki; Dt = 1,4078 m

• Tinggi Tangki; HT = 4,2234 m

• Tebal silinder; ts = ¼ in

• Bahan konstruksi = Stainless steel SA – 304

• Faktor korosi = 0,01 in/tahun

• Luas perpindahan panas = 262,8789 ft2

• Jumlah tube = 38 tube

57. Belt Conveyor (BC-03)

Fungsi : Untuk mengangkut produk dari Evaporator – 02 ke RC Laju alir bahan masuk = 466,3679 kg/jam

Panjang belt, P = 20 ft Tinggi belt, Z = 3 ft Lebar belt, L = 14 in

Kecepatan, V = 200 ft/menit Luas belt, A = 0,11 ft2

Daya, P = 2 HP

58. Rotary Cooler (RC)

Fungsi : Untuk mendinginkan produk yang keluar dari E-02

Jumlah tube : 10 buah

Luas perpindahan panas :13,6386 ft2

Daya motor : ¾ HP

59. Belt Conveyor (BC-04)

Fungsi : Untuk mengangkut produk dari Rotary Cooler (RC) ke gudang Panjang belt, P = 20 ft

Tinggi belt, Z = 3 ft Lebar belt, L = 14 in


(51)

Luas belt, A = 0,11 ft2

Daya, P = 2 HP

60. Gudang Bahan Produk (G-02)

Fungsi :Tempat menyimpan bahan baku ubi kayu selama 7 hari Bentuk : Prisma segi empat beraturan

Lebar gudang = 3,5513 m

Panjang gudang = 7,1026 m

Tinggi gudang = 3,5513 m


(52)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun,

BAB VI

INSTRUMENTASI DAN KESELAMATAN KERJA

6.1. Instrumentasi

Instrumentasi adalah suatu alat yang dipakai di dalam suatu proses kontrol untuk mengatur jalannya proses agar diperoleh hasil sesuai dengan yang diharapkan. Dalam suatu pabrik kimia, pemakaian instrumen merupakan suatu hal yang sangat penting karena dengan adanya rangkaian instrumen tersebut maka semua operasi peralatan yang ada dipabrik dapat dimonitor dan dikontrol dengan cermat, mudah dan efisien sehingga kondisi operasi selalu berada dalam kondisi yang diharapkan.

Fungsi instrumentasi adalah sebagai petunjuk (indicator), pencatat (recorder), pengontrol (regulator) dan memberi tanda bahaya (alarm). Peralatan instrumentasi biasanya bekerja dengan tenaga mekanis atau tenaga listrik dan pengontrolnya dapat dilakukan secara manual atau otomatis. Penggunaan pada suatu peralatan proses tergantung pada pertimbangan ekonomis dan system peralatan itu sendiri. Pada pemakaian alat-alat instrumen juga harus ditentukan apakah alat-alat tersebut dipasang diatas papan instrumen dekat peralatan proses (control manual) atau disatukan di dalam ruang kontrol pusat (control room) yang dihubungkan dengan bangsal peralatan (control otomatis).

Variabel-variabel proses yang biasanya dikontrol/diukur oleh instrumen adalah:

1. Variabel utama, seperti temperatur, tekanan, laju alir dan level cairan

2. Variabel tambahan, seperti densitas, viskositas, panas spesifik,

konduktivitas, pH, humiditas, titk embun, komposisi kimia, kandungan kelembaban dan variabel lainnya


(53)

Instrumentasi pada dasarnya terdiri dari:

1. Elemen perasa/elemen utama (sencing element/primary element)yaitu elemen yang menunjukkan adanya perubahan dari harga variabel yang diukur

2. Elemen pengukur (measuring element) yaitu elemen yang menerima output dari elemen primer dan melakukan pengukuran, dalam hal ini termasuk alat-alat penunjuk (indikator) maupun alat-alat-alat-alat pencatat (recorder)

3. Elemen pengontrol (controlling element) yaitu elemen yang mengadakan harga-harga perubahan dari variabel yang dirasakan oleh elemen perasa dan diukur oleh elemen pengukur untuk mengatur sumber tenaga sesuai dengan perubahan yang terjadi. Tenaga tersebut dapat berupa tenaga mekanis maupun tenaga listrik

4. Elemen pengontrol terakhir (final control element) yaitu elemen yang sebenarnya mengubah input ke dalam proses sehingga variabel yang diukur tetap berada dalam range yang diijinkan

Faktor-faktor yang perlu diperhatikan dalam instrumen-instrumen adalah: 1. Range yang diperlukan untuk pengukuran

2. Level instrumentasi

3. Ketelitian yang dibutuhkan 4. Bahan konstruksinya

5. Pengaruh pemasangan instrumentasi pada kondisi proses Instrumentasi yang umum digunakan dalam pabrik adalah: 1. Untuk variabel temperatur:

• Temperature Controller (TC)

• Temperature Indicator Controller (TIC) 2. Untuk variabel tinggi permukaan cairan:

• Level Controller (LC)

• Level Indicator Controller (LIC) 3. Untuk variabel tekanan:

• Pressure Controller (PC)

• Pressure Indicator Controller (PIC) 4. Untuk variabel aliran cairan:


(54)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun, • Flow Controller (FC)

• Flow Indicator Controller (FIC)

• Flow Recorder Controller (FRC)

Jika system pengendalian proses dirancang dengan cermat, permasalahan instrumentasi seperti keterlambatan transmisi, siklisasi karena respon yang lambat atau tidak dijawab, radiasi dan factor lainnya dapat dihilangkan.

Instrumentasi yang digunakan pada pabrik pembuatan kalsium laktat adalah: 1. Instrumentasi tangki

Instrumentasi pada tangki mencakup level controller (LC) dan flow

controller (FC). LC berfungsi untuk mengontrol ketinggian permukaan di

dalam tangki. Pengontrolan ketinggian cairan ini dilakukan dengan mengatur laju cairan (FC) yang masuk atau keluar dari tangki.

2. Instrumentasi reaktor

Instrumentasi pada reaktor mencakup level controller (LC), pressure

controller (PC) dan temperature controller (TC). LC berfungsi untuk

mengontrol ketinggian permukaan bahan di dalam reaktor. PC berfungsi untuk mempertahankan tekanan dalam reaktor agar tetap 1 atm. Sedangkan TC berfungsi untuk mempertahankan temperatur operasi dalam reaktor 3. Instrumentasi cooler

Instrumentasi pada cooler mencakup temperature controller (TC). TC ini berfungsi mempertahankan temperatur produk keluar dari cooler

4. Instrumentasi decanter

Mencakup level controller (LC). LC berfungsi untuk mengontrol ketinggian permukaan cairan di dalam decanter. Pengontrolan ketinggian permukaan cairan ini dilakukan dengan mengatur laju cairan yang masuk atau keluar dari decanter

5. Instrumentasi sentrifugal

Mencakup level controller (LC) dan pressure controller (PC). LC berfungsi untuk mengontrol ketinggian permukaan cairan di dalam sentrifugal. Sedangkan PC berfungsi untuk mempertahankan tekanan operasi sentrifugal


(55)

6. Instrumentasi evaporator

Mencakup pressure controller (PC), flow controller (FC), dan temperature

controller (TC). FC berfungsi untuk mengontrol laju alir bahan di dalam

evaporator. PC berfungsi untuk mempertahankan tekanan dalam evaporator agar tetap 1 atm. Sedangkan TC berfungsi untuk mempertahankan temperatur operasi dalam evaporator

7. Instrumentasi rotary steam dryer

Mencakup temperature controller (TC) yang berfungsi untuk

mempertahankan temperatur operasi dan pressure controller (PC) yang berfungsi untuk mempertahankan tekanan pada rotary dryer

8. Instrumentasi pompa

Mencakup flow controller (FC) yang berfungsi untuk mempertahankan aliran agar kecepatan alirnya seperti yang diharapkan

Tabel 6.1. Daftar Instrumentasi Pada Pra Rancangan Pabrik Pembuatan Kalsium Laktat

No Nama alat Jenis instrumen

1 Tangki Level Controller (LC)

Flow Controller (FC)

2 Reaktor Temperatur Controller (TC)

Level Controller (LC) Pressure Controller (PC)

3 Cooler Temperature Controller (TC)

4 Dekanter Level Controller (LC)

5 Sentrifuge Level Controller (LC)

Pressure Controller (PC)

6 Evaporator Temperature Controller (TC)

Flow Controller (FC) Pressure Controller(PC) 7 Rotary Steam Dryer Temperature Controller (TC)

Pressure Controller (PC)


(56)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun, 6.2 Keselamatan Kerja

Keselamatan kerja merupakan bagian dari kelangsungan produksi pabrik, sehingga aspek ini harus diperhatikan secara serius. Keselamatan kerja merupakan suatu cara untuk mencegah terjadinya kecelakaan ataupun cacat pada saat bekerja di suatu perusahaan/pabrik. Keselamatan kerja merupakan jaminan perlindungan bagi keselamatan karyawan dari bahaya cacat jasmani dan kematian. Kecelakaan dapat disebabkan oleh mesin, bahan baku, produk, serta keadaan tempat kerja, sehingga harus mendapat perhatian yang serius dan dikendalikan dengan baik oleh pihak perusahaan.

Salah satu faktor yang penting sebagai usaha menjamin keselamatan kerja adalah dengan menumbuhkan dan meningkatkan kesadaran karyawan akan pentingnya usaha menjamin keselamatan kerja. Usaha-usaha yang dapat dilakukan antara lain :

1. Melakukan pelatihan secara berkala bagi karyawan.

2. Membuat peraturan tentang tata cara dengan pengawasan yang baik dan memberi sanksi pada karyawan yang tidak disiplin.

3. Membekali karyawan dengan keterampilan peralatan secara benar dan cara-cara mengatasi kecelakaan kerja. (Bernasconi,1995)

Hal-hal yang perlu dipertimbangkan dalam perancangan pabrik untuk menjamin keselamatan kerja antara lain :

1. Menanamkan kesadaran dan keselamatan kerja bagi seluruh karyawan. 2. Pada proses yang rawan dipasang papan peringatan.

3. Adanya penerangan yang cukup dan sistem pertukaran udara/ventilasi yang baik.

4. Menempatkan peralatan keselamatan dan pencegahan kebakaran di daerah yang rawan akan kecelakaan atau kebakaran.

5. Pemasangan alarm (tanda bahaya), sehingga bila terjadi bahaya dapat segera diketahui.

6. Penyediaan poliklinik dengan sarana yang memadai untuk pertolongan pertama (Bernasconi,1995)


(57)

(58)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun, 6.3 Keselamatan Kerja pada Pabrik Kalsium Laktat

6.3.1 Bahaya Kerja yang Mungkin Terjadi dalam Pabrik Pembuatan Kalsium Laktat

Bahaya kerja yang mungkin terjadi dalam pabrik pengolahan kalsium laktat mencakup :

1. Bahaya yang disebabkan oleh mesin, peralatan dan perkakas

- Bahaya karena bagian yang bergerak, seperti tangan menyentuh alat yang berputar.

- Bahaya cedera karena jatuhnya perkakas, sekrup, atau beban pada saat reparasi atau perakitan.

- Bahaya karena tekanan lebih dalam peralatan.

- Bahaya karena perkakas yang rusak atau tidak cocok, misalnya mur yang aus, pahat yang rusak, gagang palu yang longgar dan kunci pas yang tidak tepat.

2. Bahaya yang berkaitan dengan energi

- Bahaya dalam menggunakan energi listrik. Hal ini dapat terjadi ketika membuka atau memasukkan tangan ke dalam kotak instalasi istrik, ketika melakukan reparasi dengan cara yang salah ataupun pada saluran-saluran listrik dan pembumian (grounding) yang tidak sempurna.

- Bahaya ketika menggunakan energi pemanas. Bahaya kebakaran pada

bagian-bagian yang tidak terisolasi, misalnya pada tempat keluarnya steam panas.

- Bahaya kebakaran dan ledakan karena kebocoran bahan bakar cair atau gas (Bernasconi,1995)

6.3.2 Pencegahan terhadap Bahaya Kebakaran dan Peledakan

Untuk pencegahan bahaya kebakaran dan peledakan dapat dilakukan hal-hal berikut :

1. Bahan-bahan yang mudah terbakar/meledak harus disimpan di tempat yang aman dan dikontrol secara teratur.

2. Untuk semua sistem yang menangani gas bertekanan tinggi yang mudah

terbakar perlu dilengkapi dengan katup-katup pengaman. 3. Disediakan alat deteksi dan sistem alarm yang sensitif.

4. Penyediaan peralatan pemadam kebakaran yang dilengkapi dengan pompa-pompa hidran pada tiap jarak tertentu.


(59)

5. Pemakaian peralatan-peralatan yang dilengkapi dengan pengaman pencegah kebakaran. (Bernasconi,1995)

Sesuai dengan peraturan pemerintah tertulis dalam Peraturan Tenaga Kerja No.Per/02/Men/1983 tentang instalasi alarm kebakaran otomatis, yaitu :

1. Detektor Kebakaran, merupakan alat yang berfungsi untuk mendeteksi secara dini adanya suatu kebakaran awal. Alat ini terbagi atas :

- Smoke detector, adalah detektor yang bekerja berdasarkan terjadinya

akumulasi asap dalam jumlah tertentu.

- Gas detector, adalah detektor yang bekerja berdasarkan kenaikan konsentrasi

gas yang timbul akibat kebakaran ataupun gas-gas lain yang mudah terbakar. 2. Alarm kebakaran, merupakan komponen dari sistem deteksi yang memberi

isyarat adanya kebakaran. Alarm ini berupa :

- Alarm kebakaran yang memberi tanda atau isyarat yang berupa bunyi khusus

(audible alarm)

- Alarm kebakaran yang memberi tanda atau isyarat yang tertangkap oleh

pandangan mata secara jelas (visible alarm).

3. Panel Indikator Kebakaran, merupakan suatu komponen dari suatu sistem deteksi dan alarm kebakaran yang berfungsi mengendalikan kerja sistem dan terletak di ruang operator.

Rancangan pabrik ini juga dilengkapi juga dengan sistem sprinkler, yaitu sistem yang bekerja secara otomatis dengan memancarkan air bertekanan ke segala arah untuk memadamkan kebakaran atau setidak-tidaknya mencegah meluasnya kebakaran.

Adapun sistem pemadaman kebakaran yang tidak kalah pentingnya pada perancangan pabrik dalam penanggulangan bahaya kebakaran adalah fasilitas fire

station, markas mobil pemadam kebakaran untuk berjaga-jaga apabila suatu waktu

terjadi kebakaran.

6.3.3 Peralatan Perlindungan Diri

Adapun peralatan perlindungan diri ini meliputi :

1. Pakaian kerja, masker, sarung tangan, dan sepatu pengaman bagi karyawan yang bekerja berhubungan dengan bahan kimia, misalnya pekerja laboratorium.

2. Helm, sepatu pengaman, dan pelindung mata bagi karyawan yang bekerja di semua bagian unit proses. Penutup telinga bagi karyawan bagian ketel, kamar listrik (genset), dan lain-lain. (Bernasconi,1995)


(60)

Nurhidayah : Pra Rancangan Pabrik Pembuatan Kalsium Laktat Dari Ubi Kayu Berkapasitas 10.000 Ton/Tahun, 6.3.4 Keselamatan Kerja terhadap Listrik

Menjaga keselamatan pekerja terhadap listrik dapat dilakukan dengan :

1. Setiap instalasi dan peralatan listrik harus diamankan dengan sekring pemutus arus listrik otomatis.

2. Memasang papan tanda larangan yang jelas pada daerah sumber tegangan tinggi. 3. Kabel-kabel listrik yang letaknya berdekatan dengan alat-alat yang bekerja pada

suhu tinggi harus diisolasi secara khusus.

4. Tangki destilasi dan tangki penyimpanan hasil produksi yang menjulang tinggi harus dilengkapi dengan penangkal petir yang dibumikan.

5. Isolasi kawat hantaran listrik harus disesuaikan dengan keperluan.

(Bernasconi,1995)

6.3.5 Pencegahan terhadap Bahaya Mekanis

1. Letak alat diatur sedemikian rupa sehingga para operator dapat bekerja dengan baik apabila ada perbaikan atau pembongkaran.

2. Alat–alat dipasang dengan penahan yang cukup kuat, untuk mencegah

kemungkinan jatuh atau terguling.

3. Peralatan yang berbahaya, seperti reaktor harus diberi pagar pengaman.

4. Ruang gerak karyawan harus cukup lapang dan tidak menghambat

(Bernasconi,1995)

6.3.6 Pencegahan terhadap Gangguan Kesehatan

1. Menyediakan poliklinik yang memadai di lokasi pabrik.

2. Setiap karyawan diwajibkan untuk memakai pakaian kerja selama berada di dalam lokasi pabrik.

3. Karyawan diharuskan memakai sarung tangan karet serta penutup hidung dan mulut saat menangani bahan-bahan kimia yang berbahaya.

4. Bahan-bahan kimia yang selama pembuatan, pengelolaan, pengangkutan, penyimpanan, dan penggunaannya dapat menimbulkan ledakan, kebakaran, korosi, maupun gangguan terhadap kesehatan harus ditangani secara cermat. (Bernasconi,1995)


(61)

6.3.7 Pencegahan dan Pertolongan Pertama jika Terkena Bahan Kimia

Tabel 6.2 Pencegahan dan Pertolongan Pertama jika Terkena Bahan Kimia R

Gejala Pencegahan Pertolongan Pertama

Kulit Iritasi pada kulit, kulit kemerah-merahan, sakit, terluka, melepuh

Mengenakan alat pelindung diri seperti pakaian pelindung, sepatu pengaman dan sarung tangan

− Segera membuka pakaian, sepatu atau sarung tangan yang terkena bahan kimia.

− Segera mencuci kulit yang terkena bahan kimia dengan air bersih.

− Segera ke dokter untuk meminta perawatan medis.

Mata Iritasi pada

mata, mata kemerah-merahan, mata sakit.

Mengenakan kaca mata pelindung dan alat pelindung wajah lainnya seperti masker.

− Membilas mata dengan air bersih lebih kurang 15 menit.

− Jika keadaan gawat, segera ke dokter untuk meminta

perawatan medis. Pernafasan Iritasi pada

hidung, tenggorokan, terganggunya saluran pernafasan.

Menggunakan alat pelindung

pernafasan

− Segera menghirup udara segar.

− Jika keadaan gawat, segera ke dokter untuk meminta

perawatan medis. Sumber: Bernasconi,1995


(1)

L = harga akhir peralatan n = umur peralatan

Semua modal investasi tetap langsung (MITL). kecuali tanah mengalami

penyusutan yang disebut depresiasi. sedang modal investasi tetap tidak langsung (MITTL) juga mengalami penyusutan yang disebut amortisasi.

Biaya amortisasi diperkirakan 30% dari MITTL. sehingga Amortisasi = 0.3 x Rp 74.795.818.291.-.

= Rp 22.438.745.487.-

Tabel LE-10 Perkiraan Biaya Depresiasi

Komponen Biaya (Rp) Umur (tahun) Depresiasi (Rp)

Bangunan 12.783.500.000 10 1.278.350.000

Alat proses & utilitas 12.571.398.066 10 1.257.139.807 Instrumentasi dan kontrol 2.262.851.652 10 226.285.165

Perpipaan 15.839.961.563 10 1.583.996.156

Instalasi listrik 6.788.554.956 10 678.855.496

Insulasi 4.525.703.304 10 452.570.330

Inventaris kantor 9.051.406.607 10 905.140.661

Sarana transportasi 3.040.000.000 10 304.000.000

Total 6.686.337.615

Total biaya depresiasi dan amortisasi

= Rp 22.438.745.487 + Rp 6.686.337.615 = Rp 29.125.083.102.-

D. Biaya Tetap Perawatan

a. Perawatan mesin dan alat – alat proses

Diperkirakan 10% dari HPT = 0.1 x Rp 12.571.398.066.- = Rp 1.257.139.807.-

b. Perawatan bangunan

Diperkirakan 10% dari harga bangunan = 0.1 x Rp 12.783.500.000.- = Rp 1.278.350.000.-


(2)

c. Perawatan kendaraan

Diperkirakan 10% dari harga kendaraan = 0.1 x Rp 3.040.000.000

= Rp 304.000.000.-

d. Perawatan instrumentasi dan alat kontrol

Diperkirakan 10% dari harga instrumentasi dan alat control = 0.1 x Rp 2.262.851.652.-

= Rp 226.285.165.- e. Perawatan perpipaan

Diperkirakan 10% dari harga perpipaan = 0.1 x Rp 15.839.961.563.- = Rp 1.583.996.156.- f. Perawatan instalasi listrik

Diperkirakan 10% dari harga instalasi listrik = 0.1 x Rp 6.788.554.956.-

= Rp 678.855.496.-

g. Perawatan inventaris kantor

Diperkirakan 10% dari harga inventaris kantor = 0.1 x Rp 9.051.406.607-

= Rp 905.140.661.-

Total biaya perawatan = a + b + c + d + e + f + g = Rp 6.686.337.615.-

E. Biaya Tambahan (Plant Overhead Cost)

Diperkirakan 30% dari modal investasi tetap = 0.3 x Rp 261.785.364.018.-

= Rp 78.535.609.205.-

F. Biaya Administrasi Umum

Diperkirakan 10% dari biaya tambahan

= 0.1 x Rp 78.535.609.205.- = Rp 7.853.560.921.-

G. Biaya Pemasaran dan Distribusi

Diperkirakan 10% dari biaya tambahan = 0.1 x Rp 78.535.609.205.- = Rp 7.853.560.921.-


(3)

H. Biaya Laboratorium. Penelitian dan Pengembangan

Diperkirakan 20% dari biaya tambahan = 0.2 x Rp 78.535.609.205.-

= Rp 15.707.121.841.-

I. Biaya Asuransi

a. Asuransi pabrik diperkirakan 1% dari modal investasi tetap = 0.01 x Rp 261.785.364.018.-

= Rp 2.617.853.640.-

b. Asuransi karyawan 1.54% dari total gaji karyawan

( Biaya untuk asuransi tenaga kerja adalah 2.54% dari gaji karyawan . dimana 1%

ditanggung oleh karyawan dan 1.54% ditanggung oleh perusahaan) = 0.0154 x (12/3) x Rp 408.500.000.- = Rp 25.163.600

Total biaya asuransi = Rp 2.617.853.640.-+ Rp 25.163.600.- = Rp 2.643.017.240.-

J. PBB = Rp 17.852.000,-

Total biaya tetap = A + B + C + D + E + F + G + H + I + J = Rp 213.686.611.071,-

3.2 Biaya Variabel

A. Biaya Variabel Bahan Baku = Rp 139.871.397.780.-

B. Biaya Variabel pemasaran

Diperkirakan 20% dari biaya tetap pemasaran

= 0.2 x Rp 7.853.560.921.- = Rp 1.570.712.184

C. Biaya Variabel Perawatan

Diperkirakan 20% dari biaya tetap perawatan

= 0.2 x Rp 6.686.337.615.- = Rp 1.337.267.523.-

D. Biaya Variabel Lainnya

Diperkirakan 40% dari biaya tetap


(4)

= Rp 85.474.644.428.-

Total Biaya Variabel = Rp 226.916.754.392.- Total biaya produksi = Biaya Tetap + Biaya Variabel

= Rp 213.686.611.071.- + Rp 226.916.754.392.- = Rp 440.603.365.463.-

4. Perkiraan Laba/Rugi Perusahaan A. Laba Sebelum Pajak

Laba sebelum pajak = total penjualan – total biaya produksi

= Rp 587.078.730.000- Rp 440.603.365.463.- = Rp 146.475.364.537.-

B. Pajak Penghasilan.

Berdasarkan Pasal 21 Undang-Undang No.17 tahun 2000 tentang Pajak Penghasilan (PPh) adalah :

Jumlah Penghasilan Kena Pajak Tarif

(%)

Sampai dengan Rp.25.000.000.- 10

Diatas Rp.25.000.000.- sampai dengan Rp.50.000.000.- 15

Diatas Rp.50.000.000.- 30

Perincian pajak penghasilan (PPh) terhutang :

10 % x Rp.25.000.000.- = Rp. 2.500.000.-

15 % x Rp.50.000.000.- = Rp. 7.500.000.- 30 % x Rp. 146.475.364.537.- = Rp 43.942.609.361- +

Total pajak penghasilan (PPh) = Rp. 43.952.609.361.-

C. Laba Setelah Pajak

Laba setelah pajak = laba sebelum pajak – PPh

= Rp 146.475.364.537.- Rp 43.952.609.361.- = Rp 102.522.755.176.-


(5)

5. Analisa Aspek Ekonomi A. Profit Margin (PM)

PM = 100%

penjualan total pajak sebelum Laba x

PM = 100%

0.000 587.078.73 4.537,-146.475.36 x

= 24,95 %

B. Break Even Point (BEP)

BEP = 100%

Variabel Biaya -Penjualan Total Tetap Biaya x

BEP = 100%

4.392 226.916.75 0.000 587.078.73 1.071 213.686.61 x = 59,33 %

C Return On Investement (ROI)

Return on Investment adalah besarnya presentase pengembalian modal setiap tahun dari penghasilan bersih.

ROI = 100%

investasi modal Total pajak setelah Laba x

ROI = 100%

8.553 492.808.06 -5.176 102.522.75 x

= 20,8 %

D. Pay Out Time (POT)

POT = 1 x100% ROI

POT = 100%

20,8 1

x = 4,8 tahun

E.Return on Network (RON)

Return on network merupakan perbandingan laba setelah pajak dengan modal

sendiri.

RON = 100%

sendiri. Modal pajak setelah Laba x


(6)

RON = 100%

-1.132 295.684.84

5.176,-102.522.75

x = 42,73 %

F. Internal Rate of Return (IRR)

Internal rate of return merupakan presentase yang menggambarkan keuntungan rata - rata bunga pertahun dari semua pengeluaran dan pemasukan besarnya sama.

Apabila IRR ternyata lebih besar dari bunga rill yang berlaku. maka pabrik akan menguntungkan. tetapi bila IRR lebih kecil dari bunga rill yang berlaku maka pabrik dianggap rugi.

Dari perhitungan lampiran E diperoleh IRR = 46,48% . sehingga pabrik akan menguntungkan karena lebih besar dari bunga pinjaman bank saat ini yaitu sebesar 20% (Bank Indonesia. 2007).