n Analisis Preferensi Masyarakat Kota Bogor terhadap Calon Walikota 2009 - 2014
kontingensi r x c, isi sel dalam tabel kontingensi itu disebut frekuensi sel teramati
Daniel, 1989 Hipotesis-hipotesis yang diuji dalam uji
Khi-Kuadrat adalah sebagai berikut : H
: kedua kriteria klasifikasi saling bebas
H
1
: kedua kriteria klasifikasi tidak saling bebas
dimana statistik ujinya adalah :
c j
ij ij
ij r
i
E E
O
1 2
1 2
Keterangan : O
ij
: Frekuensi amatan pada baris ke-i dan kolom ke-j
E
ij
: Frekuensi harapan pada baris ke-i dan kolom ke-j.
r : Banyaknya baris pada tabel kontingensi.
c : Banyaknya kolom pada tabel kontingensi.
Rumus umum untuk memperoleh nilai dari frekuensi harapan adalah sebagai
berikut : n
n n
E
.j i.
ij
Keterangan :
E
ij
: Frekuensi harapan pada baris ke-i dan kolom ke-j.
n
i.
: total baris ke-i
n
.j
: total kolom ke-j
n : total amatan
Kita menolak hipotesis nol apabila pada taraf nyata α, nilai statistik uji χ
2
hasil perhitungan lebih besar daripada nilai χ
2 1-
α
pada tabel dengan derajat bebas r-1c-1.
Analisis Korespondensi Sederhana
Greenancre 1984 menyatakan bahwa penyajian data secara grafis mempunyai
beberapa kelebihan di antaranya dapat meringkas data, mudah diinterpretasikan,
karena dapat menyederhanakan aspek data dengan menyajikan data secara visual.
Analisis korespondensi adalah salah satu teknik penyajian simultan terbaik, secara
visual kedalam ruang berdimensi dua, dari dua gugus data yang terbentuk lurus dan
lajur matriks sebagai titik – titik yang mewakili
kategori –
kategori data
pengamatan berdimensi dua Greenacre, 1984.
Analisis korespondensi
sederhana diterapkan pada data kategorik untuk dua
peubah. Basis datanya merupakan frekuensi tabulasi silang tabel kontingensi dua arah dari
kedua peubah Johnson, 2002 Misal N merupakan matriks data tabel
kontingensi dua arah tidak negatif :
N
ixj
=[n
ij
], n
ij
=0
Dan P
didefinisikan sebagai
matriks korespondensi :
P = 1n
..