Opening Vignette: and m anag

3.1 Opening Vignette:

Gotaas-Larsen Shipping Corp. GLSC  Strategic planning  Not a structured decision situation  Cargo ship voyage planning  DSS: Data and Models  Large-scale DSS Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ

3.2 DSS Configurations

Opening Vignette Illustrates that for the GLSC, the DSS  Supports an entire organization  Supports several interrelated decisions  Is used repeatedly and constantly  Has two major components: data and models  Utilizes a simulation model  Uses both internal and external data  Has “what-if” capabilities  Uses several quantitative models Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ DSS Definitions  Little [1970] “model-based set of procedures for processing data and judgments to assist a manager in his decision making” Assumption: that the system is computer-based and extends the user’s capabilities.  Alter [1980] Contrasts DSS with traditional EDP systems Table 3.1 Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ Dimension DSS EDP Use Active Passive User Line and staf management Clerical Goal Efectiveness Mechanical efficiency Time Horizon Present and future Past Objective Flexibility Consistency Source: Alter [1980]. Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ  Moore and Chang [1980] 1. extendible systems 2.capable of supporting ad hoc data analysis and decision modeling 3.oriented toward future planning 4.used at irregular, unplanned intervals  Bonczek et al. [1980] A computer-based system consisting of

1. a language system -- communication between the user and DSS components

2. a knowledge system 3. a problem-processing system--the link

between the other two components Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ  Keen [1980] DSS apply “to situations where a `final’ system can be developed only through an adaptive process of learning and evolution”  Central Issue in DSS support and improvement of decision making Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ TABLE 3.2 Concepts Underlying DSS Definitions. Source DSS Defined in Terms of Gorry and Scott Morton [1971] Problem type, system function support Little [1970] System function, interface characteristics Alter [1980] Usage pattern, system objectives Moore and Chang [1980] Usage pattern, system capabilities Bonczek, et al. [1996] System components Keen [1980] Development process Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ DSS  A DSS is an interactive, flexible, and adaptable CBIS, specially developed for supporting the solution of a non-structured management problem for improved decision making. It utilizes data, it provides easy user interface, and it allows for the decision maker’s own insights  DSS may utilize models, is built by an interactive process frequently by end-users, supports all the phases of the decision making, and may include a knowledge component Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ Capabilities of DSS  DSS Figure 3.1

1. Provide support in semi-structured and unstructured situations

2. Support for various managerial levels 3. Support to individuals and groups

4. Support to interdependent andor sequential decisions

5. Support all phases of the decision- making process

6. Support a variety of decision-making processes and styles

Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ

7. Are adaptive 8. Have user friendly interfaces

9. Goal is to improve the efectiveness of decision making

10. The decision maker controls the decision-making process

11. End-users can build simple systems 12. Utilizes models for analysis

13. Provides access to a variety of data sources, formats, and types

Decision makers can make better, more consistent decisions in a timely manner Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ

3.5 DSS Components

1. Data Management Subsystem

2. Model Management Subsystem 3. Knowledge Management

Subsystem 4. User Interface Subsystem

5. The User

Figure 3.2 Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ Subsystem  DSS database  Database management system  Data directory  Query facility Figure 3.3 Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ D S S In F o c u s 3 . 2 : T h e C a p a b ilit ie s o f D B M S in a D S S  C a p t u r e s e x t r a c t s d a t a f o r in c lu s io n in a D S S d a t a b a s e  U p d a t e s a d d s , d e le t e s , e d it s , c h a n g e s d a t a r e c o r d s a n d fi le s  In t e r r e la t e s d a t a f r o m d if e r e n t s o u r c e s  R e t r ie v e s d a t a f r o m t h e d a t a b a s e f o r q u e r ie s a n d r e p o r t s  P r o v id e s c o m p r e h e n s iv e d a t a s e c u r it y p r o t e c t io n f r o m u n a u t h o r iz e d a c c e s s , r e c o v e r y c a p a b ilit ie s , e t c .  H a n d le s p e r s o n a l a n d u n o ffi c ia l d a t a s o t h a t u s e r s c a n e x p e r im e n t w it h a lt e r n a t iv e s o lu t io n s b a s e d o n t h e ir o w n ju d g m e n t  P e r f o r m s c o m p le x d a t a m a n ip u la t io n t a s k s b a s e d o n q u e r ie s  T r a c k s d a t a u s e w it h in t h e D S S  M a n a g e s d a t a t h r o u g h a d a t a d ic t io n a r y Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ DSS Database Issues  Data warehouse  Special independent DSS databases  Extraction of data from internal, external and private sources  Web browser access of data  Multimedia databases  Object-oriented databases  Commercial database management systems DBMS Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ Subsystem  Mirrors the database management subsystem Figure 3.4 Model Management Issues  Model level: Strategic, managerial tactical and operational  Modeling languages  Lack of standard MBMS activities. WHY?  Use of AI and Fuzzy logic in MBMS Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ DSS In Focus 3 .3: M ajor Functions Capabilitie s of the M BM S  Cre ate s m ode ls e asily and quickly, e ithe r from scratch or from e xisting m o de ls or fro m the building blocks.  Allo w s use rs to m anipulate the m o de ls so the y can conduct e xpe rim e nts and se nsitivity analyse s rang ing fro m “w hat-if” to g o al se e king .  Store s, re trie ve

s, and m anag

e s a w ide varie ty o f dif e re nt type s o f m o de ls in a lo g ical and inte g rate d m anne r.  Acce sse s and inte g rate s the m ode l building blo cks.  Catalo g s and displays the dire ctory o f m ode ls for use by se ve ral individuals in the org anizatio n.  Tracks m ode ls data and application use .  Inte rre late s m ode ls w ith appropriate linkag e s w ith the database and inte g rate s the m w ithin the DSS.  M anag e s and m aintains the m o de l base w ith m anag e m e nt functio ns analo g ous to database m anag e m e nt: store , acce ss, run, update , link, catalog , and que ry.  Use s m ultiple m ode ls to suppo rt pro ble m solving . Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ Management Subsystem  Provides expertise in solving complex unstructured and semi- structured problems  Expertise provided by an expert system or other intelligent system  Advanced DSS have a knowledge management component  Leads to intelligent DSS  Example: Data mining Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ Subsystem  Includes all communication between a user and the MSS  To most users, the user interface is the system Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ DSS In Focus 3.5: Major Capabilities of the UIMS  Provides graphical user interface.  Accommodates the user with a variety of input devices.  Presents data with a variety of formats and output devices.  Gives users “help” capabilities, prompting, diagnostic and suggestion routines, or any other flexible support.  Provides interactions with the database and the model base.  Stores input and output data.  Provides color graphics, three-dimensional graphics, and data plotting.  Has windows to allow multiple functions to be displayed concurrently.  Can support communication among and between users and builders of MSS.  Provides training by examples guiding users through the input and modeling process.  Provides flexibility and adaptiveness so the MSS will be able to accommodate diferent problems and technologies.  Interacts in multiple, diferent dialog styles.  Captures, stores, and analyzes dialog usage tracking, to improve the dialog system. Tracking by the user is also available. Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ

3.10 The User

Dokumen yang terkait

REPRESENTASI NILAI – NILAI KEPAHLAWANAN (Analisis Semiotik Pada Film Tragedi Jakarta 1998 Karya Tino Saroengallo)

0 17 1

PENILAIAN MASYARAKAT TENTANG FILM LASKAR PELANGI Studi Pada Penonton Film Laskar Pelangi Di Studio 21 Malang Town Squere

17 165 2

REPRESENTASI KECANTIKAN PADA FOTO FASHION (Analisis Semiotika Visual pada Foto Fashion Karya “Nicoline Patricia Malina” di Media Online 21 April 2014 )

2 31 20

Upaya mengurangi kecemasan belajar matematika siswa dengan penerapan metode diskusi kelompok teknik tutor sebaya: sebuah studi penelitian tindakan di SMP Negeri 21 Tangerang

26 227 88

Perancangan Sistem Informasi Akuntansi Pajak Penghasilan (PPh) Pasal 21 Pada OT. Nikkatsu Electric Works Menggunakan Microsoft Visual Basic 6.0 Dengan Database Microsoft SQL Server 2000

4 49 290

Tinjauan Atas Pelaksanaan Pelaporan Pajak Penghasilan Pasal 21 Atas Karyawan/Orang Pribadi Oleh Bendaharawan Pemerintah Pada Kantor Sekretariat DPRD Provinsi Sulawesi Selatan

2 21 81

Sistem pemotongan pajak penghasilan pasal 21 di PT.PLN (persero) Unit Bisnis Distribusi Jawa Barat : laporan kerja praktek

0 12 45

Pengaruh penetapan pajak penghasilan pasal 21 terhadap pencatatan gaji pegawai Kantor Pelayanan Pajak Bandung Karees

0 6 49

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52

KESANTUNAN BERTUTUR DALAM INTERAKSI PEMBELAJARAN ANTARA GURU DAN SISWA KELAS VIII DI SMP NEGERI 21 BANDARLAMPUNG TAHUN AJARAN 2012/2013 DAN IMPLIKASINYA TERHADAP PEMBELAJARAN BAHASA INDONESIA DI SMP

0 8 97