Analisa Lendutan Balok Kayu Kelapa Non Prismatic Perletakan Sendi – Rol Dengan Metode Plastis (Eksperimen)

(1)

ANALISA LENDUTAN BALOK KAYU KELAPA NON

PRISMATIS PERLETAKAN SENDI – ROL DENGAN METODE

PLASTIS (EKSPERIMEN)

TUGAS AKHIR

Diajukan untuk melengkapi syarat penyelesaian pendidikan sarjana teknik sipil

Oleh :

NANDA WARDHANA

07 0404 010

BIDANG STUDI STRUKTUR

DEPARTEMEN TEKNIK SIPIL

FAKULTAS TEKNIK

UNIVERSITAS SUMATERA UTARA

2011


(2)

ii 

 

ABSTRAK

Pada perencanaan suatu konstruksi, seorang perencana dituntut untuk mendesain suatu konstruksi yang kuat, ekonomis, mudah dalam pelaksanaan, aman ketika dilakukan pembebanan maksimum dan memenuhi fungsi serta kebutuhan konstruksi. Salah satunya adalah dengan menggunakan kayu dalam perencanaan konstruksi. Penggunaan kayu prismatis dalam konstruksi telah sering dijumpai, namun pada kondisi dan pertimbangan tertentu penggunaan kayu non prismatis lebih disukai penggunaannya.

Perubahan penebalan pada batang non prismatis akan menyebabkan kekakuan yang tidak sama di setiap titiknya. Besarnya momen inersia di setiap titik ini akan memberikan pengaruh pada besarnya momen-momen di titik tersebut. Perbedaan besar momen-momen dan inersia di setiap titik pada penampang gelagar non prismatis ini mempengaruhi lendutan yang akan terjadi pada konstruksi tersebut.

Perencanaan secara plastis merupakan bentuk penyelesaian yang dianggap menguntungkan untuk mendesain suatu struktur dibandingkan dengan desain secara elastis, karena selain menggunakan persamaan matematis yang lebih mudah, metode plastis juga dapat meramalkan beban runtuh sehingga pendimensian pada material lebih ekonomis.

Dari hasil yang diperoleh, lendutan ultimate hasil eksperimen untuk balok prismatis sampel I dan II masing-masing adalah 14,987 cm dan 14,459 cm. Lendutan ultimate teoritis untuk balok prismatis sampel I dan II masing-masing adalah 13,483 cm dan 19,5 cm. Selisih rata-rata antara teori dan eksperimen pada sampel I adalah 14,78%. Selisih rata-rata antara teori dan eksperimen pada sampel II adalah 25,64%. Lendutan ultimate hasil eksperimen untuk balok non-prismatis sampel II adalah 14,992 cm. Sedangkan Lendutan ultimate teoritisnya adalah 15,514 cm. Selisih rata-rata antara teori dan eksperimen pada sampel III adalah 7,963%.

Gelagar balok non prismatis memberikan kondisi yang lebih efektif daripada bentuk penampang gelagar balok yang prismatis. Selain memberikan keuntungan dalam penghematan bahan, juga memberikan keuntungan pada beban yang dapat dipikul yang relatif sama dengan balok prismatis yang berdimensi sama dengan dimensi balok non prismatis di tengah bentang.

Kata kunci : non prismatis, metode numerik, lendutan plastis. 


(3)

iii 

 

ANALISA LENDUTAN BALOK KAYU KELAPA NON PRISMATIS

PERLETAKAN SENDI – ROL DENGAN METODE PLASTIS

(EKSPERIMEN)

TUGAS AKHIR

Diajukan untuk melengkapi tugas-tugas dan memenuhi syarat untuk menempuh ujian sarjana teknik sipil

OLEH :

NANDA WARDHANA

07 0404 010

BIDANG STUDI STRUKTUR

DEPARTEMEN

TEKNIK

SIPIL

FAKULTAS TEKNIK

UNIVERSITAS SUMATERA UTARA

2011


(4)

iv 

 

ANALISA LENDUTAN BALOK KAYU KELAPA NON PRISMATIS

PERLETAKAN SENDI – ROL DENGAN METODE PLASTIS

(EKSPERIMEN)

TUGAS AKHIR

Diajukan untuk melengkapi tugas-tugas dan memenuhi syarat untuk menempuh ujian sarjana teknik sipil

Disusun Oleh :

NANDA WARDHANA

07 0404 010

Dosen Pembimbing :

Ir. Besman Surbakti, MT NIP. 19541012 198003 1 004

Diketahui :

Ketua Departemen Teknik Sipil

Prof. Dr.Ing. Johannes Tarigan NIP : 19561224 19103 1 002

BIDANG STUDI STRUKTUR

DEPARTEMEN TEKNIK SIPIL

FAKULTAS TEKNIK

UNIVERSITAS SUMATERA UTARA

2011


(5)

v 

 

ANALISA LENDUTAN BALOK KAYU KELAPA NON PRISMATIS

PERLETAKAN SENDI – ROL DENGAN METODE PLASTIS

(EKSPERIMEN)

TUGAS AKHIR

Diajukan untuk melengkapi tugas-tugas dan memenuhi syarat untuk menempuh ujian sarjana teknik sipil

Disusun Oleh :

NANDA WARDHANA

07 0404 010

Dosen Pembimbing :

Ir. Besman Surbakti, MT NIP. 19541012 198003 1 004

         

Mengesahkan :

Ketua Departemen Teknik Sipil Fakultas Teknik Universitas Sumatera Utara

Prof. Dr.Ing. Johannes Tarigan NIP : 19561224 19103 1 002

BIDANG STUDI STRUKTUR

DEPARTEMEN TEKNIK SIPIL

FAKULTAS TEKNIK

UNIVERSITAS SUMATERA UTARA

2011

Penguji I

Prof.Dr-Ing.Johannes Tarigan

NIP. 19561224 198103 1 002

Penguji II

Ir. Torang Sitorus, MT NIP. 19571002 198601 001 

Penguji III

Ir.Robert Panjaitan NIP. 19510708 198203 1 001


(6)

vi 

 

SURAT PERNYATAAN

Melalui surat ini, mahasiswa yang tersebut di bawah ini :

Nama : NANDA WARDHANA

NIM : 07 0404 010

Fakultas/Departemen : Teknik / Teknik Sipil

Judul Tugas Akhir : Analisa Lendutan Balok Kayu Kelapa Non Prismatis Perletakan Sendi – Rol Dengan Metode Plastis (Eksperimen)

Dosen Pembimbing : Ir. Besman Surbakti, MT.

menyatakan bahwa tugas akhir ini merupakan karya tulis yang orisinil (asli), dimana dalam hal ini segenap gagasan, sudut pandang dan analisa perhitungan telah dituangkan.

Dengan demikian, dilihat dari permasalahan serta tujuan yang hendak dicapai melalui penulisan tugas akhir ini, maka dapat dikatakan bahwa tugas akhir ini adalah merupakan karya sendiri yang asli dan bukan hasil jiplakan baik sebagian maupun keseluruhan dari skripsi atau tugas akhir orang lain, kecuali kutipan yang saya cantumkan sumbernya sesuai dengan kaedah penulisan karya ilmiah.

Medan, Juni 2011

Penulis

NANDA WARDHANA

NIM. 07 0404 010


(7)

vii 

 

KATA PENGANTAR

Puji dan syukur saya panjatkan atas kehadirat Allah SWT yang telah melimpahkan rahmat dan karunia-Nya kepada saya, sehingga tugas akhir ini dapat diselesaikan dengan baik.

Tugas akhir ini merupakan syarat untuk mencapai gelar sarjana Teknik Sipil bidang struktur Departemen Teknik Sipil Fakultas Teknik Universitas Sumatera Utara, dengan judul “Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol Dengan Metode Plastis (Eksperimen)”

Saya menyadari bahwa dalam menyelesaikan tugas akhir ini tidak terlepas dari dukungan, bantuan serta bimbingan dari berbagai pihak. Oleh karena itu, saya ingin menyampaikan ucapan terima kasih yang sebesar-besarnya kepada beberapa pihak yang berperan penting yaitu :

1. Bapak Ir.Besman Surbakti, MT selaku pembimbing, yang telah banyak memberikan dukungan, masukan, bimbingan serta meluangkan waktu, tenaga dan pikiran dalam membantu saya menyelesaikan tugas akhir ini.

2. Bapak Prof Dr Ir Bustami Syam, MSME, selaku Dekan Fakultas Teknik Universitas Sumatera Utara.

3. Bapak Prof. Dr. Ing. Johannes Tarigan selaku Ketua Departemen Teknik Sipil Fakultas Teknik Universitas Sumatera Utara.

4. Bapak Ir. Syahrizal, M.T selaku Sekretaris Departemen Teknik Sipil Fakultas Teknik Universitas Sumatera Utara.


(8)

viii 

 

5. Bapak Prof. Dr.-Ing. Johannes Tarigan, Bapak Ir. Torang Sitorus, MT dan Bapak Ir. Robert Panjaitan selaku Dosen Pembanding, atas saran dan masukan yang diberikan kepada Penulis terhadap Tugas Akhir ini.

6. Bapak/Ibu seluruh staff pengajar Departemen Teknik Sipil Fakultas Teknik Universitas Sumatera Utara.

7. Seluruh pegawai administrasi Departemen Teknik Sipil Fakultas teknik Universitas Sumatera Utara yang telah memberikan bantuan selama ini kepada saya.

8. Buat keluargaku, terutama kepada kedua orang tuaku, ayahanda Zulkifli, ST dan ibunda Mariatun yang telah memberikan motivasi,semangat dan nasehat kepada saya.

9. Buat kawan-kawan seperjuangan, Didi, Herry, Gina, Rilly, Dhani, Juangga, Vina, Ari Manalu, Harly, Fadly, Yowa, Ghufran, Alfi, Jay, Saki, Falah, Aulia, Iwan, Ari(Galang), Gorby, Yussuf, Tomo, Dicky, abang-abang dan kakak senior: Kak Citra, bang Radi, bang Dian, bg Tami, bang Fahim,bg Herry, kak Diana, kak Ani. Adik-adik 08,09,10, serta teman-teman angkatan 2007 yang tidak dapat disebutkan seluruhnya terima kasih atas semangat dan bantuannya selama ini.

10. Buat mas Subandi dan ibu dan bapak kantin beton.

11.

Dan segenap pihak yang belum Penulis sebut di sini atas jasa-jasanya dalam mendukung dan membantu Penulis dari segi apapun, sehingga tugas akhir ini dapat diselesaikan dengan baik.

Saya menyadari bahwa dalam penyusunan tugas akhir ini masih jauh dari kata sempurna. Yang disebabkan keterbatasan pengetahuan dan kurangnya pemahamahan saya dalam hal ini. Oleh karena itu, saya mengharapkan saran dan kritik yang konstruktif dari para pembaca demi perbaikan menjadi lebih baik.


(9)

ix 

 

Akhir kata saya mengucapkan terima kasih dan semoga tugas akhir ini dapat bermanfaat bagi para pembaca.

Medan, Juli 2011

Penulis

( NANDA WARDHANA )  

         


(10)

! "#"$ $ % &

' "(" &

& )*) ) +

, $ $ %

-. /

#"# /

! 0 1$ 0 2" 3

! ! !

! !

! ! !

!

" # $

% &% ' $

( )

! ' )

! & " * ( " +

! , " * ( " , ( !

' "4" )# 1 "

!-& $ " " 5 $ $ '!

& * *(

& ! *(

& ' *

, )* "#


(11)

&

* %" " &

! "( 2" &

! * - * . &&

! ! * ( * . &!

/// * &!

/// * ++

/// * . +!

/// + * . % 0(

-* /1 - 2 ( +$

' "( ) ) 1 $# $ &/

6 ,!

6 $ " " " ,!

6 ( ( - # ( * ,!

( * 0(

( * 0( 2-(

( * *(

6 ! ( ( - # ( 32 4* ,&

( * 0( !

( * 0( 2-( $

( * *( $

6 ! $ *" ) 1 $# $

,-6 ! 2 (

,-2 )

2 3 !

6 ' " " ) 1 $# $ 7 * ) +!

6 & " " $# $ 7 * )

-6 -!

6 $ "( %2$ 5 * 5% 5 )7 $ -!

, 5 ( * )

, 5 ( * )

, 5 ( * . . . )+

, + 5 ( * . % 0( % )

, - ( 5 ( * . * " ( " " ( * 2- 6

6 ! % " *" 5 ) $ /&

6 ! * % (2 - ( / &* ' /&

6 ! ! * % (2 - ( // &* ' /+

6 ! ' * % (2 - ( /// &32 4* '

/-6 ' *" $ $7 # 33

6 & 4 * ) * $7 # 3'

6 , $ "$ $ #4 % $ 3&


(12)

6 ,

6 $ #7" ,

6 ! +

8


(13)

!

" !

# !

$ $ #

$ $ % % &

$ $ $ &

" $ $ $ !

# $ $ '

& (

) !

' *

*

) +

" "

% "

" % % #

# #

& &

! ( ( % , , *

- % "

- % % ""

- % "&

" "!

# "!

& #)

! #)

' #

" + #

" #


(14)

.

" #

" " + #"

" # ##

" & ##

" ! #&

" ' #!

" * % #*

" ) #*

" /0 1 234 &

" . &

# *"

# *&

# *'

# " . )

# # . )

# & . )

# ! % )


(15)

!! "

# $

% & ' $

( ) ' *

( ) + ' *%

( % ) + + ' *"

( " ) ' *

( , , , , , - *.

( . , , , , , - *$

( $ , , , , , -% */

( * 0 , # !! /%

( / 0 , # /. /%

( ! 1 # # 2 /

( 1 # # 2 /$

( 1 # # 2 //

( % 1 ) 3 1 # # !!

( " , 4 # 5 3 !%


(16)

q beban merata L panjang bentang

Lp panjang plastis pada balok

P beban terpusat

n Jumlah sendi plastis untuk runtuh r derajat statis tak tentu

y tinggi serat

α faktor daerah elastis pada penampang φ sudut kelengkungan balok

M momen lentur

RA reaksi di titik A

RB reaksi di titik B

ε regangan (strain)

εy regangan (strain) pada keadaan leleh

εs regangan (strain) pada keadaan strain hardening

panjang awal

k Kelengkungan

ky Kelengkungan pada keadaan leleh

E modulus elastis baja

Es modulus elastis baja pada keadaan strain hardening

σ tegangan normal

σy tegangan leleh

σult tegangan leleh ultimate

σyu tegangan leleh atas

FK faktor keamanan Mp momen plastis

My momen leleh

Mx momen pada saat elastis sejauh x

f faktor bentuk (shape factor) S section modulus


(17)

Z plastic modulus

x jarak bentang sejauh x satuan D tinggi penampang

Dx tinggi penampang pada jarak x

b lebar penampang

I momen inertia

Ix momen inersia pada jarak x

.p lendutan plastis


(18)

ii 

 

ABSTRAK

Pada perencanaan suatu konstruksi, seorang perencana dituntut untuk mendesain suatu konstruksi yang kuat, ekonomis, mudah dalam pelaksanaan, aman ketika dilakukan pembebanan maksimum dan memenuhi fungsi serta kebutuhan konstruksi. Salah satunya adalah dengan menggunakan kayu dalam perencanaan konstruksi. Penggunaan kayu prismatis dalam konstruksi telah sering dijumpai, namun pada kondisi dan pertimbangan tertentu penggunaan kayu non prismatis lebih disukai penggunaannya.

Perubahan penebalan pada batang non prismatis akan menyebabkan kekakuan yang tidak sama di setiap titiknya. Besarnya momen inersia di setiap titik ini akan memberikan pengaruh pada besarnya momen-momen di titik tersebut. Perbedaan besar momen-momen dan inersia di setiap titik pada penampang gelagar non prismatis ini mempengaruhi lendutan yang akan terjadi pada konstruksi tersebut.

Perencanaan secara plastis merupakan bentuk penyelesaian yang dianggap menguntungkan untuk mendesain suatu struktur dibandingkan dengan desain secara elastis, karena selain menggunakan persamaan matematis yang lebih mudah, metode plastis juga dapat meramalkan beban runtuh sehingga pendimensian pada material lebih ekonomis.

Dari hasil yang diperoleh, lendutan ultimate hasil eksperimen untuk balok prismatis sampel I dan II masing-masing adalah 14,987 cm dan 14,459 cm. Lendutan ultimate teoritis untuk balok prismatis sampel I dan II masing-masing adalah 13,483 cm dan 19,5 cm. Selisih rata-rata antara teori dan eksperimen pada sampel I adalah 14,78%. Selisih rata-rata antara teori dan eksperimen pada sampel II adalah 25,64%. Lendutan ultimate hasil eksperimen untuk balok non-prismatis sampel II adalah 14,992 cm. Sedangkan Lendutan ultimate teoritisnya adalah 15,514 cm. Selisih rata-rata antara teori dan eksperimen pada sampel III adalah 7,963%.

Gelagar balok non prismatis memberikan kondisi yang lebih efektif daripada bentuk penampang gelagar balok yang prismatis. Selain memberikan keuntungan dalam penghematan bahan, juga memberikan keuntungan pada beban yang dapat dipikul yang relatif sama dengan balok prismatis yang berdimensi sama dengan dimensi balok non prismatis di tengah bentang.

Kata kunci : non prismatis, metode numerik, lendutan plastis. 


(19)

1 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol 

dengan Metode Plastis (Eksperimen). Teknik Sipil USU,  2011 

BAB I

PENDAHULUAN

1.1 LATAR BELAKANG

Dalam dunia teknik sipil, pengkajian dan penelitian masalah bahan bangunan masih terus dilakukan. Oleh karena itu masih selalu dicari dan diusahakan pemakaian jenis bahan bangunan dan model struktur yang ekonomis, mudah diperoleh, mudah pengerjaannya, mencukupi kebutuhan/kekuatan struktur dengan biaya yang relatif murah.

Kayu merupakan salah satu bahan bangunan yang banyak dijumpai, sering dipakai dan di Indonesia relatif mudah untuk mendapatkannya. Berat jenis kayu lebih ringan bila dibanding baja ataupun beton, selain itu kayu juga mudah dalam pengerjaannya. Ditinjau dari segi struktur, kayu cukup baik dalam menahan gaya tarik, tekan dan lentur. Ditinjau dari segi arsitektur, bangunan kayu mempunyai nilai estetika yang tinggi dan relatif ekonomis.

Penggunaan batang prismatis pada balok telah sering dijumpai pada konstruksi-konstruksi yang menggunakan kayu sebagai komponen strukturnya, tetapi sekarang ini pada kondisi-kondisi tertentu batang non prismatis lebih disukai penggunaanya daripada batang prismatis. Banyak sekali keuntungan-keuntungan penting yang terdapat dalam penerapan penggunaan batang non prismatis. Perubahan penebalan pada batang non prismatis akan menyebabkan kekakuan yang tidak sama di setiap titiknya.

Besarnya momen inersia di setiap titik ini akan memberikan pengaruh pada besarnya momen-momen dan gaya-gaya geser di titik tersebut.


(20)

2 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol 

dengan Metode Plastis (Eksperimen). Teknik Sipil USU,  2011 

Perbedaan besar momen-momen dan inersia di setiap titik pada penampang gelagar non prismatis ini mempengaruhi lendutan yang akan terjadi pada konstruksi tersebut. Selain itu suatu keuntungan yang tidak kalah penting, dari segi konstruksinya balok non-prismatis memiliki nilai keindahan (estetika).

Salah satu kriteria kenyamanan adalah lendutan. Selain direncanakan untuk menahan beban yang bekerja padanya, suatu struktur juga harus menghasilkan defleksi (lendutan) yang berada dalam batas-batas tertentu agar struktur tersebut dapat memberikan pelayanan yang aman. Lendutan ini tidak boleh terlalu besar sampai melebihi peraturan atau spesifikasi defleksi.

Telah terdapat beberapa metode untuk menyelesaikan persamaan ini baik secara elastis maupun plastis. Metode-metode penyelesaian tersebut biasanya hanya berbeda dalam menyatakan kelengkungan dan syarat batasnya saja.

Metode plastis merupakan metode desain struktur yang memperhitungkan keruntuhan suatu struktur dikarenakan terjadinya sejumlah sendi plastis. Lendutan pada kondisi plastis akan terus bertambah tanpa memerlukan penambahan beban lagi. Keadaan ini menunjukkan bahwa struktur telah mencapai mekanisme runtuhnya. Semakin besar penambahan beban yang dilakukan secara bertahap maka daerah serat dari penampang akan mengalami tegangan leleh yang semakin besar pula. Hingga pada suatu beban plastis, maka seluruh serat akan mengalami leleh, yang akibatnya konstruksi akan runtuh. Metode ini berdasar prinsip kerja virtual yaitu kerja luar sama dengan kerja dalam.


(21)

3 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol 

dengan Metode Plastis (Eksperimen). Teknik Sipil USU,  2011 

Gambar 1.1 Daerah perubahan momen Keterangan gambar di atas, yaitu :

a. Titik 1 = Momen Elastis Leleh b. Titik 2 = Momen Leleh

c. Titik 3 = Momen elastoplastis d. Titik 4 = Momen Plastis Penuh

Gambar 1.2 Distribusi tegangan pada balok

Keterangan gambar 1.2 di atas, yaitu : a. Daerah 1 disebut daerah elastis

b. Daerah 2-3 disebut Daerah Elasto-Plastis c. Daerah 4 disebut derah momen plastis penuh


(22)

4 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol 

dengan Metode Plastis (Eksperimen). Teknik Sipil USU,  2011  Dimana :

M1 = Momen Elastis

My = Momen Yield (Leleh)

My’= Momen peralihan (Elasto-Plastis) Mp = Momen Plastis

Desain plastis merupakan bentuk penyelesaian yang dianggap menguntungkan untuk mendesain suatu struktur statis tak tentu dibandingkan dengan desain secara elastis, karena selain menggunakan persamaan matematis yang lebih mudah, metode plastis juga dapat meramalkan beban runtuh sehingga pendimensian pada material lebih ekonomis.

1.2 PERUMUSAN MASALAH

Perbedaan kekakuan disetiap titik pada batang non prismatis memberikan pengaruh terhadap momen inersia dan lendutan yang terjadi. Hal ini berpengaruh terhadap pelayanan yang diberikan dan segi ekonomisnya. Hal ini dibandingkan dengan batang prismatis yang lebih sering digunakan. Sehingga penulis merasa analisis dan eksperimen lendutan pada balok kayu non prismatis dianggap penting untuk di bahas dalam tugas akhir ini.

1.3 MAKSUD DAN TUJUAN

Mengetahui dan menganalisis besarnya lendutan plastis balok kayu non prismatis yang terjadi pada perletakan sendi-rol beban terpusat simetris kemudian membandingkannya antara teori dan eksperimen.


(23)

5 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol 

dengan Metode Plastis (Eksperimen). Teknik Sipil USU,  2011 

1.4 PEMBATASAN MASALAH

Adapun pembatasan masalah yang diambil untuk mempermudah penyelesaian adalah :

a. Bahan kayu dianggap bersifat homogen dan orthotropis. b. Penyelesaian persamaan ditinjau dalam keadaan plastis saja. c. Metode penyelesaian persamaan menggunakan metode numerik. d. Tegangan geser, gaya normal dan regangan tidak ditinjau.

e. Pengaruh komposisi bahan, temperature, kecepatan regang bahan dan residual stress tidak ditinjau.

f. Aplikasi pengujian dalam perletakan sendi-rol dengan beban terpusat. g. Kayu yang dipakai adalah kayu kelapa

h. Kayu kelapa yang diteliti merupakan kayu yang masih alami. Tidak ada perubahan Mechanical Properties kayu akibat proses pengawetan atau proses kimiawi lainnya

i. Mechanical Properties konstan dari setiap jenis kayu pada satu balok kayu.

j. Dimensi kayu yang di uji adalah : - (4 x 6) inchi2 untuk sampel I - (4 x 4) inchi2 untuk sampel II

Untuk sampel III, dimensi pada ujung bentang adalah (4 x 4) inchi2 dan berubah secara linier sehingga dimensi pada tengah bentang adalah (4 x 6) inchi2

- Panjang Bentang (L) adalah 3 meter.


(24)

6 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol 

dengan Metode Plastis (Eksperimen). Teknik Sipil USU,  2011  1.5 METODOLOGI

Metode yang digunakan dalam penulisan tugas akhir ini adalah eksperimen dan kajian literatur berdasarkan metode plastis untuk menghitung lendutan serta masukan-masukan dari dosen pembimbing.

Pada penampang prismatis, hanya nilai dari momen yang bervariasi terhadap x disepanjang bentang gelagar (L) sedangkan nilai inersia dari penampang adalah konstan. Namun pada penampang non prismatis nilai momen dan inersia bervariasi terhadap x disepanjang bentang gelagar (L) yaitu Mxdan EIx.

Tahapan pelaksanaan yang digunakan dalam eksperimen tugas akhir ini adalah :

1. Penyediaan bahan-bahan material yang digunakan.

2. Melakukan mechanical properties dari bahan material, untuk mendapatkan :

a. Kadar air ; b. Berat jenis ;

c. Kuat tekan sejajar serat ; d. Teganan lentur ultimate ; e. Elastisitas lentur kayu.

3. Menyiapkan model dan sampel penelitian.

4. Melakukan pengujian pembebanan dengan ilustrasi sebagai berikut:


(25)

7 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol 

dengan Metode Plastis (Eksperimen). Teknik Sipil USU,  2011  Keterangan :

P = Beban Uji h = 6 inchi L = 3 meter

0,5L

L

0,5L P

h

Gambar 1.3 Permodelan Sampel I P

0,5L

L

0,5L

2

/3h

Gambar 1.4 Permodelan Sampel II P

0,5L

L

0,5L

2

/3h h

Gambar 1.5 Permodelan Sampel III


(26)

8 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol 

dengan Metode Plastis (Eksperimen). Teknik Sipil USU,  2011 

5. Mengamati kondisi benda uji pada saat pembebanan 6. Menganalisis hasil pengujian.

1.5 SISTEMATIKA PENULISAN

Sistematika penulisan tugas akhir ini adalah sebagai berikut : BAB I PENDAHULUAN

Pada bab ini berisikan hal – hal umum dan latar belakang penelitian, permasalahan yang akan diamati, tujuan yang akan dicapai, pembatasan masalah dan metodologi penelitian yang dilaksanakan oleh penulis.

BAB II STUDI PUSTAKA

Pada bab ini berisikan keterangan – keterangan umum dan khusus mengenai tata cara pengujian dan perencanaan kayu, juga referensi tentang balok non prismatic yang akan diteliti berdasarkan referensi – referensi yang penulis dapatkan.

BAB III METODOLOGI PENELITIAN

Pada bab ini berisikan persyaratan dan pemeriksaan bahan – bahan yang akan digunakan dalam penelitian, pembuatan benda uji, prosedur pengujian, dan pengambilan data.

BAB IV ANALISA LENDUTAN BALOK NON-PRISMATIS

Pada bab ini dibahas analisa lendutan balok dengan penampang non-prismatis berdasarkan kajian literatur dan penurunan rumus.

BAB V ANALISA DAN PEMBAHASAN HASIL PENELITIAN

Bab ini berisikan data – data hasil pengujian dan pembahasan data – data dari pengujian di laboratorium, serta perbandingan antara perhitungan analitis dengan penelitian dilakukan.

BAB VI KESIMPULAN DAN SARAN

Bab ini berisikan kesimpulan – kesimpulan yang didapat dari proses penulisan tugas akhir ini serta saran – saran untuk pengembangan penelitian serta saran – saran yang membangun agar dapat diperoleh penulisan skripsi yang lebih baik lagi dikemudian hari.


(27)

9 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

BAB II

STUDI PUSTAKA

II.1 UMUM

Perubahan penebalan pada batang non prismatis akan menyebabkan kekakuan yang tidak sama di setiap titiknya. Besarnya momen inersia di setiap titik ini akan memberikan pengaruh pada besarnya momen momen dan gaya gaya geser di titik tersebut. Perbedaan besar momen momen dan inersia di setiap titik pada penampang gelagar non prismatis ini mempengaruhi lendutan yang akan terjadi pada konstruksi tersebut.

Kayu merupakan salah satu bahan bangunan yang banyak dijumpai, sering dipakai dan di Indonesia relatif mudah untuk mendapatkannya. Berat jenis kayu lebih ringan bila dibanding baja ataupun beton, selain itu kayu juga mudah dalam pengerjaannya. Ditinjau dari segi struktur, kayu cukup baik dalam menahan gaya tarik, tekan dan lentur. Ditinjau dari segi arsitektur, bangunan kayu mempunyai nilai estetika yang tinggi dan relatif ekonomis.

Metode plastis merupakan metode desain struktur yang memperhitungkan keruntuhan suatu struktur dikarenakan terjadinya sejumlah sendi plastis. Lendutan pada kondisi plastis akan terus bertambah tanpa memerlukan penambahan beban lagi. Keadaan ini menunjukkan bahwa struktur telah mencapai mekanisme runtuhnya. Semakin besar penambahan


(28)

10 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

beban yang dilakukan secara bertahap maka daerah serat dari penampang akan mengalami tegangan leleh yang semakin besar pula. Hingga pada suatu beban plastis, maka seluruh serat akan mengalami leleh, yang akibatnya konstruksi akan runtuh. Metode ini berdasar prinsip kerja virtual yaitu kerja luar sama dengan kerja dalam.

II.2 SIFAT SIFAT KAYU II.2.1 Umum

Potensi kayu sebagai bahan struktural saat ini belum tergantikan oleh bahan lain secara menyeluruh. Kayu adalah salah satu bahan konstruksi yang digunakan dalam struktur bangunan sipil seperti rumah, jembatan, dan bantalan kereta api. Ketersediaannya yang banyak dan mudah karena didapatkan dari tumbuhan di alam, menjadikan kayu sebagai bahan konstruksi yang paling pertama digunakan. Sifatnya yang dapat diperbaharui membuat kayu sebagai bahan konstruksi yang ramah lingkungan. Hal ini juga membuat kayu merupakan bahan konstruksi yang akan selalu dibutuhkan sampai kapanpun.

Kayu mempunyai kuat tarik dan kuat tekan relatif tinggi dan berat yang relatif rendah, mempunyai daya tahan tinggi terhadap pengaruh kimia dan listrik, dapat dengan mudah untuk dikerjakan, relative murah, dapat mudah diganti, dan bisa didapat dalam waktu singkat (Felix, 1965).

Kayu dinilai memiliki sifat sifat utama yang menyebabkan kayu tetap dibutuhkan oleh manusia. Beberapa sifat umum kayu tersebut antara lain :


(29)

11 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

1. Kayu merupakan sumber kekayaan alam yang tidak akan habis, apabila

dikelola dan diusahakan dengan cara cara yang baik. Artinya jika pohon di hutan ditebang untuk diambil kayunya, segera harus dilakukan penanaman kembali, supaya sumber kayu tidak habis. Oleh karena itu kayu dikatakan sebagai sumber daya alam yang dapat di perbaharui. Berbeda dengan barang tambang yang setelah di eksploitasi, sumbernya akan habis. Jadi eksploitasi bahan bahan tambang dibatasi persediaannya yang diukur dengan satuan waktu.

2. Kayu merupakan bahan mentah yang mudah diposes untuk dijadikan suatu

bentuk jadi. Dengan kemajuan teknologi, kayu sebagai bhan mentah dapat diolah menjadi berbagai bentuk yang memudahkan dalam proses konstruksi. 3. Kayu mempunyai sifat sifat spesifik yang tidak bisa ditiru oleh bahan bahan

lain. Misalnya kayu mempunyai sifat elastis.

4. Kayu tersusun dari sel sel yang memiliki tipe bermacam macam dan susunan dinding selnya terdiri dari senyawa kimia berupa selulosa dan hemi selulosa (karbohirat) serta lignin (non karbohidrat).

5. Semua kayu bersifat , yaitu memperlihatkan sifat sifat yang berlainan jika diuji menurut tiga arah utamanya (longitudinal, radial dan tangensial).

6. Kayu merupakan bahan yang bersifat , yaitu dapat

menyerap atau melepaskan kadar air (kelembaban) sebagai akibat perubahan kelembaban dan suhu udara disekelilingnya.

7. Kayu dapat diserang oleh hama dan penyakit dan dapat terbakar terutama dalam keadaan kering.


(30)

12 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011 II.2.2 Sifat Fisis Kayu dan Sifat Mekanis Kayu

Sifat dan kekuatan tiap tiap jenis kayu berbeda beda, sehingga penggunaan kelas kayu harus disesuaikan dengan konstruksi yang akan dibuat. Oleh karena itu kita harus sedikit banyaknya mengetahui tentang beberapa ciri ciri dan sifat sifat kayu. Antara lain yang terpenting adalah mengenai sifat sifat mekanis atau kekuatan kayu, yang merupakan kemampuan kayu untuk menahan muatan dari luar berupa gaya gaya di luar kayu yang mempunyai kecenderungan untuk mengubah bentuk dan besarnya kayu.

II.2.2.1 Sifat Fisis Kayu a. Berat Jenis Kayu

Berat jenis didefenisikan sebagai angka berat dari satuan volume suatu material. Berat jenis diperoleh dengan membagikan berat kepada volume benda tersebut. Berat jenis diperoleh dengan cara menimbang suatu benda pada suatu timbangan dengan tingkat keakuratan yang diperlukan. Untuk praktisnya, digunakan timbangan dengan ketelitian 20%, yaitu sebesar 20 gr/kg. Sedangkan untuk menentukan volume, cara yang umum dan mudah dilakukan adalah dengan mengukur panjang, lebar dan tebal suatu benda dan mengalikan ketiganya. Sebaiknya ukuran sampel kayu tidak kurang dari ukuran dari 7.5 cm x 5 cm x 2.5 cm,


(31)

13 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Mengingat kayu terbentuk dari sel – sel yang memiliki bermacam – macam tipe, memungkinkan terjadinya suatu penyimpangan tertentu . Pada perhitungan berat jenis kayu semestinya berpangkal pada keadaan kering udara, yaitu sekering – keringnya tanpa pengeringan buatan.

Berat jenis kayu biasanya berbanding lurus dengan kekuatan daripada kayu atau sifat – sifat mekanisnya. Makin tinggi berat jenis suatu kayu maka makin tinggi pula kekuatannya.

b. Kadar Air Kayu

Kayu sebagai bahan konstruksi dapat mengikat air dan juga dapat melepaskan air yang dikandungnya. Keadaan seperti ini tergantung pada kelembaban suhu udara di sekelilingnya, dimana kayu itu berada. Kayu mempunyai sifat peka terhadap kelembaban, karena pengaruh kadar airnya menyebabkan mengembang dan menyusutnya kayu serta mempengaruhi pula sifat sifat fisis dan mekanis kayu.

Kadar air sangat besar pengaruhnya terhadap kekuatan kayu, terutama daya pikulnya terhadap tegangan desak sejajar arah serat dan juga tegak lurus arah serat kayu. Sel sel kayu mengandung air, yang sebagian merupakan bebas yang mengisi dinding sel. Apabila kayu mengering, air bebas keluar dahulu dan saat air bebas itu habis keadaannya disebut titik jenuh serat

. Kadar air pada saat itu kira kira 25 % 30 %. Apabila kayu mengering di bawah titik jenuh serat, dinding sel menjadi semakin padat sehingga mengakibatkan serat seratnya menjadi kokoh dan kuat. Maka dapat


(32)

14 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

diambil suatu kesimpulan bahwa turunnya kadar air mengakibatkan bertambahnya kekuatan kayu.

Pada umumnya kayu kayu di Indonesia yang kering udara mempunyai kadar air (kadar lengas) antara 12 % 18 %, atau rata rata adalah 15 %. Tetapi apabila berat dari benda uji tersebut menunjukkan angka yang terus menerus menurun (berkurang), maka kayu belum dapat dianggap kering udara (jadi masih basah). Untuk menentukan secara kasar apakah kadar lengas kayu sudah di bawah 30 % atau belum, dapat digunakan rumus pendekatan seperti di bawah ini :

= 1,15 − × 100%

Dimana :

x = Kadar air kayu (%)

Gx = Berat benda uji mula mula (gr)

Gku = Berat benda uji setelah kering udara (gr)

Bila berat benda uji sudah menunjukkan angka yang konstan, maka kayu tersebut sudah dapat dianggap kering udara, sehingga kadar lengas kayu dapat diperoleh dengan cara :

= − × 100%


(33)

15 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

P

P

Serat Kayu

II.2.2.2 Sifat Mekanis

Sifat mekanis kayu meliputi keteguhan kayu, yaitu perlawanan yang diberikan oleh suatu jenis kayu terhadap perubahan perubahan bentuk yang disebabkan oleh gaya gaya luar. Perlawanan kayu terhadap gaya gaya luar ini dapat dibedakan menjadi:

a. Keteguhan Tarik

Keteguhan tarik adalah kekuatan atau daya tahan kayu terhadap dua buah gaya yang bekerja dengan arah yang berlawanan dan gaya ini bersifat tarik (lihat Gambar II.1). Gaya tarik ini berusaha melepas ikatan antara serat serat kayu tersebut. Sebagai akibat dari gaya tarik (P), maka timbullah di dalam kayu tegangan tegangan tarik, yang harus berjumlah sama dengan gaya gaya luar P. Bila gaya tarik ini membesar sedemikian rupa, serat serat kayu terlepas dan terjadilah patahan. Dalam suatu konstruksi bangunan, hal ini tidak boleh terjadi untuk menjaga keamanan.

Tegangan tarik masih diizinkan bila tidak timbul suatu perubahan atau bahaya pada kayu, disebut dengan tegangan tarik yang diizinkan dengan notasi F (MPa). Misalnya, untuk kayu dengan kode mutu E26 tegangan tarik yang diizinkan dalam arah sejajar serat adalah 60 MPa.

Gambar 2.1 Batang yang menerima gaya tarik P


(34)

16 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

P

P

Bahaya Tekuk

P

P

Serat Kayu

b. Keteguhan Tekan

Keteguhan tekan/kompresi adalah kekuatan atau daya tahan kayu terhadap gaya gaya tekan yang bekerja sejajar atau tegak lurus serat kayu. Gaya tekan yang bekerja sejajar serat kayu akan menimbulkan bahaya tekuk pada kayu tersebut (lihat Gambar II.2). Sedangkan gaya tekan yang bekerja tegak lurus arah serat akan menimbulkan retak pada kayu (Gambar II.3).

Gambar 2.2 Batang kayu menerima gaya tekan sejajar serat

Batang batang yang panjang dan tipis seperti papan, mengalami bahaya kerusakan lebih besar ketika menerima gaya tekan sejajar serat jika dibandingkan dengan gaya tekan tegak lurus serat kayu. Sebagai akibat adanya gaya tekan ini akan menimbulkan tegangan tekan pada kayu. Tegangan tekan terbesar dimana tidak menimbulkan adanya bahaya disebut tegangan tekan yang diizinkan, dengan notasi F (MPa).

Gambar 2.3 Batang kayu yang menerima gaya tekan tegak lurus serat


(35)

17 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

P

P

Gaya Geser

c. Keteguhan Geser

Keteguhan geser adalah kekuatan atau daya tahan kayu terhadap dua gaya gaya tekan yang bekerja padanya, kemampuan kayu untuk menahan gaya gaya yang menyebabkan bagian kayu tersebut bergeser atau tergelincir dari bagian lain di dekatnya. Akibat gaya geser ini maka akan timbul tegangan geser pada kayu (lihat Gambar II.4).

Dalam hal ini, keteguhan geser dibagi menjadi 3 (tiga) macam, yaitu keteguhan geser sejajar serat, keteguhan geser tegak lurus serat dan keteguhan geser miring. Tegangan geser terbesar yang tidak akan menimbulkan bahaya pada pergeseran serat kayu disebut tegangan geser yang diizinkan, dengan notasi F (MPa).

Gambar 2.4 Batang kayu yang menerima gaya geser tegak lurus arah serat, F (MPa)

d. Keteguhan Lengkung ( Lentur )

Keteguhan lengkung ( lentur ) adalah kekuatan atau daya tahan kayu terhadap gaya gaya yang berusaha melengkungkan kayu tersebut. Keteguhan lengkung dapat dibedakan menjadi 2 (dua) macam, yaitu keteguhan lengkung statik dan keteguhan lengkung pukul. Keteguhan lengkung statik menunjukkan kekuatan kayu dalam menahan gaya yang mengenainya


(36)

18 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

P

g aris n etral

T erteka n

T erta rik

perlahan lahan, sedangkan keteguhan lengkung pukul adalah kekuatan kayu dalam menahan gaya yang mengenainya secara mendadak.

Balok kayu yang terletak pada dua tumpuan atau lebih, bila menerima beban berlebihan akan melengkung/melentur. Pada bagian sisi atas balok akan terjadi tegangan tekan dan pada sisi bawah akan terjadi tegangan tarik yang besar (lihat Gambar II.5). Akibat tegangan tarik yang melampaui batas kemampuan kayu maka akan terjadi regangan yang cukup berbahaya.

Gambar 2.5 Batang kayu yang menerima beban lengkung

e. Keteguhan Belah

Keteguhan belah adalah kemampuan kekuatan kayu dalam menahan gaya gaya yang berusaha membelah kayu. Kayu lebih mudah membelah menurut arah sejajar serat kayu. Keadaan kayu juga mempengaruhi sifat pembelahan, misalnya kayu yang basah lebih mudah dibelah daripada kayu yang telah kering.

II.2.3 Tegangan Bahan Kayu

Istilah kekuatan atau tegangan pada bahan seperti kayu adalah kemampuan bahan untuk mendukung beban luar atau beban yang berusaha


(37)

19 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

merubah bentuk dan ukuran bahan tersebut. Akibat beban luar yang bekerja ini menyebabkan timbulnya gaya – gaya dalam pada bahan yang berusaha menahan perubahan ukuran dan bentuk bahan. Gaya dalam ini disebut dengan yang dinyatakan dalam Pound / ft 2 . Dibeberapa negara satuan tegangan ini mengacu ke sistem Internasional ( SI ) yaitu N / mm 2 .

Perubahan ukuran atau bentuk ini dikenal sebagai atau regangan. Jika tegangan yang bekerja kecil maka regangan atau deformasi yang terjadi juga kecil dan jika tegangan yang bekerja besar maka deformasi yang terjadi juga besar. Jika kemudian tegangan dihilangkan maka bahan akan kembali kebentuk semula. Kemampuan bahan untuk kembali kebentuk semula tergantung pada besar sifat elastisitasnya. Jika tegangan yang diberikan melebihi daya dukung serat maka serat – serat akan putus dan terjadi kegagalan atau keruntuhan.

Deformasi sebanding dengan besarnya beban yang bekerja sampai pada satu titik . Titik ini adalah . Setelah melewati titik ini besarnya deformasi akan bertambah lebih cepat dari besarnya beban yang diberikan . Hubungan antara beban dan deformasi ditunjukkan pada gambar 2.6 berikut .


(38)

20 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Gambar 2.6 Hubungan antara beban tekan dengan deformasi untuk tarikan dan tekanan

Kayu memiliki beberapa tegangan, pada satu jenis tegangan nilainya besar dan untuk jenis tegangan yang lain nilainya kecil. Sebagai contoh tegangan tekan cenderung memperpendek kayu sedangkan tegangan tarik akan memperpanjang kayu. Biasanya kayu akan menderita kombinasi dari beberapa tegangan yang terjadi secara bersamaan meski salah satu jenis tegangan lebih mendominasi. Kemampuan untuk melentur bebas dan kembali kebentuk semula tergantung kepada elastisitas, dan kemampuan untuk menahan terjadinya perubahan bentuk disebut dengan kekakuan.

Modulus elastisitas adalah ukuran hubungan antara tegangan dan regangan dalam limit proporsional yang memberikan angka umum untuk menyatakan kekakuan atau elastis suatu bahan. Semakin besar modulus elastisitas kayu, maka kayu tersebut semakin kaku.

Istilah getas digunakan untuk mendeskripsikan deformasi yang terjadi sebelum patah. Dapat diperhatikan bahwa sifat getas ini bukan menyatakan kelemahan. Sebagai contoh, besi tuang dan kapas adalah bahan yang getas,

Beban

Deformasi

Tarikan

Tekanan Limit Proporsional

Limit Proporsional


(39)

21 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

walaupun besarnya beban yang dibutuhkan untuk mengakibatkannya hancur sangat berbeda.

Dalam mencari karakteristik kekuatan kayu ada dua cara yang dapat dilakukan. Pertama, dengan pengujian langsung di lapangan. Kedua, dengan penelitian. Karena pelaksanaan pengujian di lapangan memerlukan biaya yang besar maka pengujian dengan penelitian merupakan alternatif pemilihan.

Pada penelitian ada 2 (dua) jenis pengujian yang dapat dilakukan. Pengujian dengan menggunakan sampel kecil dan pengujian kayu sebagai struktural. Pengujian dengan menggunakan sampel penting untuk tujuan komparatif, yang memberikan indikasi bahwa sifat sifat kekuatan setiap jenis jenis kayu berbeda. Karena pengujian dirancang untuk menghindari pengaruh kerusakan lain, sehingga hasilnya tidak menunjukkan beban aktual yang mampu diterima dan faktor yang harus digunakan untuk mendapatkan tegangan kerja yang aman. Pengujian kayu dengan bentuk struktural lebih mendekati kondisi penggunaan yang sebenarnya. Secara khusus dianggap penting karena dapat mengamati kerusakan seperti pecah pecah. Kelemahan pada pengujian ini adalah memerlukan biaya yang besar dan pekerjaannya sulit karena membutuhkan kayu dalam jumlah yang besar dan butuh waktu yang lebih lama. Selain itu, faktor pemilihan bahan dalam ukuran yang besar dengan kualitas yang seragam menjadi sangat penting dibandingkan dengan pemilihan sampel dalam ukuran kecil.

Pengujian dengan menggunakan sampel kecil telah memiliki standar pengujian. Karena sifat kekuatan kayu sangat dipengaruhi oleh kandungan


(40)

22 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

air, pengujian dapat dilakukan dalam kondisi terpisah. Pengujian ini dilakukan dengan menggunakan material kayu yang memiliki kandungan standar. Pengujian dilakukan pada bahan kering udara dengan kadar air yang diketahui dan angka angka kekuatan tersebut dikoreksi terhadap kandungan air standar. Ketelitian dibutuhkan untuk mengeliminasi faktor faktor yang dapat membuat variasi sifat kekuatan.

Pengujian dengan sampel kecil dari jenis jenis kayu yang berbeda beda kini telah dilakukan, dan banyak batasan data yang diperoleh. Angka angka yang diterbitkan untuk kayu yang berbeda beda dapat dibandingkan dengan metode pengujian yang telah distandarkan. Angka angka ini sendiri dapat dipakai dalam memperhitungkan tegangan kerja karena faktor koreksi telah diperhitungkan.

Umumnya secara empiris hanya sedikit karakteristik kekuatan kayu yang diketahui. Sebagai contoh adalah kualitas kayu oak, kayu jati, dan kayu damar sebagai bahan struktur. Hasil pengujian berdasarkan nilai tegangan dan regangan dari kayu tersebut. Nilai tegangan diperoleh dari besarnya beban per luas penampang yang dibebani, dinyatakan dalam N/mm², atau :

= ) (σ

Dan regangan didefinisikan sebagai deformasi per ukuran semula yaitu :

!

− =

) (ε


(41)

23 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Ada beberapa jenis tegangan yang dapat dialami oleh suatu material,

yaitu tegangan tekan (" ), tegangan tarik (

), dan tegangan lentur ( ). Pada tegangan tekan, material mengalami tekanan pada luasan tertentu yang menyebabkan timbulnya tegangan pada material dalam menahan tekanan tersebut sampai batas keruntuhan dan diambil sebagai nilai tegangan tekan. Demikian pula dengan tarikan, tegangan tarik timbul akibat adanya gaya dalam pada material yang berusaha menahan beban tarikan yang terjadi. Kemampuan maksimum material menahan tarikan adalah sebagai sebagai tegangan tarik (lihat Gambar II.8).

Gambar 2.7 Tegangan tekan dan tegangan tarik

Tegangan yang bekerja :

#

) / ( ) / (

=

σ

……….( 2.1 )

Dimana :

σ( / ) = Tegangan tekan/tarik yang terjadi (kg/cm²)

T e k a n a n

T e g . T e k a n

T a r i k a n

T e g . T a r i k


(42)

24 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

P( / ) = Beban tekan / tarik yang terjadi (kg)

A = Luas penampang yang menerima beban (cm²)

Secara teoritis, semakin ringan kayu maka semakin kurang kekuatannya, demikian juga sebaliknya. Pada umumnya dapat dikatakan bahwa kayu kayu yang berat sekali juga kuat sekali. Kekuatan, kekerasan dan sifat teknik lainnya adalah berbanding lurus dengan berat jenisnya. Tentunya hal ini tidak terlalu sesuai, karena susunan dari kayu tidak selalu sama.

II.2.4 Kuat Acuan Berdasarkan Pemilahan Secara Mekanis

Pemilihan secara mekanis untuk mendapatkan modulus elastisitas lentur harus dilakukan dengan mengikuti standar pemilahan mekanis yang baku. Berdasarkan modulus elastis lentur yang diperoleh secara mekanis, kuat acuan lainnya dapat diambil mengikuti tabel 2.1. Kuat acuan yang berbeda dengan Tabel 2.1 dapat digunakan apabila ada pembuktian secara eksperimental yang mengikuti standar standar eksperimen yang baku.

Tabel 2.1 Nilai Kuat Acuan (MPa) Berdasarkan Atas Pemilahan Secara Mekanis pada Kadar Air 15% ( Berdasarkan PKKI NI 5 2002 )

Kode

Mutu Ew Fb Ft// Fc// Fv Fc┴

E26 E25 E24 E23

25000 24000 23000 22000

66 62 59 56

60 58 56 53

46 45 45 43

6,6 6,5 6,4 6,2

24 23 22 21


(43)

25 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

E22 E21 E20 E19 E18 E17 E16 E15 E14 E13 E12 E11 E10 21000 20000 19000 18000 17000 16000 15000 14000 13000 14000 13000 12000 11000 54 56 47 44 42 38 35 32 30 27 23 20 18 50 47 44 42 39 36 33 31 28 25 22 19 17 41 40 39 37 35 34 33 31 30 28 27 25 24 6,1 5,9 5,8 5,6 5,4 5,4 5,2 5,1 4,9 4,8 4,6 4,5 4,3 20 19 18 17 16 15 14 13 12 11 11 10 9 Dimana :

Ew = Modulus elastis lentur

Fb = Kuat lentur

Ft// = Kuat tarik sejajar serat

Fc// = Kuat tekan sejajar serat

Fv = Kuat Geser

Fc┴ = Kuat tekan tegak lurus


(44)

26 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

II.2.5 Kuat Acuan Berdasarkan Pemilihan Secara Visual

Pemilahan secara visual harus mengikuti standar pemilahan secara visual yang baku. Apabila pemeriksaan visual dilakukan berdasarkan atas pengukuran berat jenis, maka kuat acuan untuk kayu berserat lurus tanpa cacat dapat dihitung dengan menggunakan langkah langkah sebagai berikut :

a. Kerapatan ρ pada kondisi basah (berat dan volume diukur pada kondisi basah, tetapi kadar airnya lebih kecil dari 30 %) dihitung dengan mengikuti prosedur baku. Gunakan satuan kg/m³ untuk ρ. b. Kadar air, $ (m < 30), diukur dengan prosedur baku.

c. Hitung berat jenis pada $ ( % ) dengan rumus :

d. % =

ρ

/ [1000 (1 + /100)] ………(2.2)

e. Hitung berat jenis dasar (% ) dengan rumus :

f. % = % / [1 + 0,265 a % ] ………(2.3)

dengan a = (30 – ) / 30

g. Hitung berat jenis pada kadar air 15 % ( G15 ) dengan rumus :

G15 = % / (1 – 0,133% ) ………..…………..( 2.4 )

h. Hitung estimasi kuat acuan, dengan modulus elastisitas lentur (& ) =

16500 G0.7, dimana G : Berat jenis kayu pada kadar air 15 % = G 15 .

Untuk kayu dengan serat tidak lurus dan/atau mempunyai cacat kayu, estimasi nilai modulus elastis lentur acuan pada point f harus direduksi dengan mengikuti ketentuan pada SNI (Standar Nasional Indonesia) 03 3527 1994 UDC (Universal Decimal Classification) 691.11 tentang “Mutu Kayu


(45)

27 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Bangunan“ yaitu dengan mengalikan estimasi nilai modulus elastis lentur acuan dari Tabel 2.1 tersebut dengan nilai rasio tahanan yang ada pada Tabel 2.2 yang bergantung pada kelas mutu kayu . Kelas mutu kayu ditetapkan dengan mengacu pada Tabel II.3.

Tabel 2.2 : Nilai Rasio Tahanan

Kelas Mutu Nilai Rasio Tahanan

A

B

C

0,80

0,63

0,50

Tabel 2.3 : Cacat Maksimum untuk Setiap Kelas Mutu Kayu

Macam Cacat Kelas Mutu A Kelas Mutu B Kelas Mutu C

Mata kayu :

Terletak di muka lebar Terletak di muka sempit Retak

Pingul

Arah serat Saluran Damar

Gubal

Lubang serangga

1/6 lebar kayu 1/8 lebar kayu 1/5 tebal kayu 1/10 tebal atau

lebar kayu 1:13 1/5 tebal kayu eksudasi tidak diperkenan Diperkenankan Diperkenankan asal terpencar

dan ukuran dibatasai dan tidak ada tanda

1/4 lebar kayu 1/6 lebar kayu 1/6 tebal kayu 1/6 tebal atau

lebar kayu 1:9 2/5 tebal kayu

Diperkenankan Diperkenankan asal terpencar

dan ukuran dibatasai dan tidak ada tanda

1/2 lebar kayu 1/4 lebar kayu 1/2 tebal kayu 1/4 tebal atau

lebar kayu 1:6 1/2 tebal kayu

Diperkenankan Diperkenankan asal terpencar dan

ukuran dibatasai dan tidak ada

tanda tanda


(46)

28 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Cacat lain (lapuk, hati rapuh, retak melintang)

tanda serangga hidup Tidak diperkenankan

tanda serangga hidup Tidak diperkenankan

serangga hidup

Tidak diperkenankan

II.3 HUBUNGAN MOMEN KELENGKUNGAN

Suatu struktur akan berotasi secara tidak terbatas pada saat terjadi sendi plastis. Momen menyebabkan terjadinya lenturan pada struktur. Semakin besar momen yang terjadi, akan semakin besar pula lenturan yang diakibatkannya. Sebelum gaya luar bekerja pada balok, maka balok masih dalam keadaan lurus. Namun setelah gaya luar bekerja pada balok tersebut, maka balok akan melentur. Biasanya diasumsikan bahwa material balok bersifat homogen, dan balok hanya mengalami lentru murni, yaitu dengan mengabaikan pengaruh gaya lintang dan gaya aksial yang bekerja pada balok tersebut. Adapun perubaan kelengkungan akibat lentur murni ditunjukkan oleh gambar berikut :


(47)

29 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Gambar 2.8 Kelengkungan Balok

Titik A, B dan C akan tertekan, sedangkan titik A1, B1 dan C1 akan

meregang. Perpanjangan garis A1 A, B1 B, atau C1 C akan bertemu disuatu

titik, misalkan titik O. Kita mengasumsikan bahwa bidang rata akan tetap rata, dan selalu tegak lurus serat memanjang. Sudut yang terbentuk akibat terjadinya perubahan kelengkungan di titik A dan B atau B dan C , kita nyatakan dengan NØ. Kalau NØ ini cukup kecil, maka :

ab = (ρ y) NØ,

a1b1=ρNØ……….. 2.5

dengan ρ adalah jari jari kelengkungan ( ).

Dengan demikian, regangan memanjang di suatu serat sejauh y dari sumbu netral dinyatakan sebagai :

6 . 2 ... ... ... ... ... ... ... ... ...

1 1

1 1

ρ ε ε

'

− =

− =

Dimana 1/ ρ menunjukkan kelengkungan. Tanda negatif menunjukkan


(48)

30 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

bahwa bagian di atas garis netral berada pada kondisi tekan; sedangkan bagian di bawah garis pada kondisi tarik.

Dengan ε = σ / E, maka :

7 . 2 ... ... ... ... ... ... ... ... ... 1

&' (

( ' &

σ σ

= =

Tegangan tarik pada serat bawah dan tegangan tekan pada serat atas adalah :

=

σ

Dimana : S=Modulus penampang y = D/2

akhirnya diperoleh:

8 . 2 ... ... ... ... ... ... ... ... 1

2 / 2

/ 1

2 2

) ' &*

(

! * & !

(

= =

= → =

Dari persamaan (2.6), untuk harga ε = εy dan y = z diperoleh harga

kelengkungan:

K=εy/z………..….2.9

Dengan εy merupakan regangan leleh.

Pada saat penampang mengalami lenturan, bagian atas akan memendek dan bagian bawah akan memanjang. Selama proses dari elastis ke plastis, dapat dikatakan bahwa penampang mengalami 3 kondisi penting, yaitu :


(49)

31 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

1. Pada saat tegangan lelehnya masih berada di bagian atas. 2. Saat tegangan leleh telah mencapai bagian tengah . 3. Saat seluruh serat telah mencapai tegangan leleh.

Keadaan di atas diperlihatkan pada gambar berikut:

Gambar 2.9 Distribusi Tegangan pada Penampang

Persamaan kelengkungan untuk penampang segi empat, nilai = 1,5 :

10 . 2 ... ... ... ... ... ... ... .

5 , 0

2

      − =

+ +'

Kurva momen kelengkungan yang diperoleh dari persamaan (2.10) diperlihatkan pada gambar berikut:

Gambar 2.10 Hubungan Momen Kelengkungan


(50)

32 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Perbandingan antara momen plastis Mp dengan momen leleh

My menyatakan peningkatan kekuatan penampang akibat ditinjau dari

kondisi plastis. Perbandingan ini tergantung dari bentuk

penampangnya, ( ). Maka :

12 . 2 . ... ... ... ... ... ... ... ...

,

'

= =

Dimana : = faktor bentuk ( )

Mp = momen plastis penampang My = momen leleh

S = modulus penampang Z = modulus plastis

II.4 ANALISA STRUKTUR SECARA PLASTIS

II.4.1 Pengertian Sendi Plastis

Analisa struktur secara plastis bertujuan untuk menentukan beban batas yang dapat dipikul oleh suatu struktur ketika mengalami keruntuhan. Keruntuhan struktur dimulai dengan terjadinya sendi plastis. Keruntuhan dapat bersifat menyeluruh atau parsial.Penambahan beban lagi pada suatu struktur setelah serat terluar telah mencapai kondisi leleh, akan mengakibatkan tegangan lelehnya menjalar ke serat sebelah dalam. Dengan penambahan beban sedikit lagi maka seluruh serat pada penampang tersebut akan mengalami tegangan leleh. Dan momen maksimum yang terjadi pada penampang tersebut menjadi momen plastis. Pada saat keadaan ini,


(51)

33 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

penampang akan mengalami rotasi yang cukup besar tanpa terjadi perubahan momen. Dapat dikatakan bahwa pada struktur tersebut yang terjadi momen maksimum telah terbentuk sendi plastis (

). Titik titik tertentu pada penampang yang memiliki momen terbesar akan lebih cepat terbentuk sendi plastis dibandingkan titik titik lain pada penampang tersebut.

Dari keadaan di atas dapat dikatakan bahwa sendi plastis merupakan suatu kondisi dimana terjadi perputaran (rotasi) pada suatu struktur yang berlangsung secara terus menerus sebelum pada akhirnya mencapai keruntuhan yang diakibatkan oleh pembebanan eksternal. Jumlah sendi plastis yang diperlukan untuk mengubah suatu struktur ke dalam kondisi mekanisme keruntuhannya, sangat berkaitan dengan derajat statis tak tentu yang ada dalam struktur tersebut. Pada struktur statis tak tentu, pembentukan satu sendi plastis belum langsung menyebabkan terjadinya keruntuhan struktur. Sejumlah tertentu sendi plastis harus terbentuk dulu agar struktur mencapai kondisi mekanisme keruntuhannya. Hal ini dapat dirumuskan sebagai berikut :

n = r +1

dimana : n = jumlah sendi plastis untuk runtuh r = derajat statis tak tentu atau redundan


(52)

34 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Adapun mekanisme keruntuhan pada berbagai perletakan yaitu: 1. Struktur dua perletakan sendi rol (balok statis tertentu)

Struktur pembebanan mekanisme runtuh

Gambar 2.11 Mekanisme Keruntuhan Balok

Struktur dengan beban terpusat di tengah bentang ini hanya memerlukan sebuah sendi plastis untuk mencapai mekanisme keruntuhannya. Sendi plastis akan terbentuk di tengah bentangan struktur tersebut karena momen maksimum terjadi pada titik ini. Sehingga titik inilah yang mencapai kapasitas momen plastis penampangnya lebih dahulu dari pada titik lain pada bentang tersebut. 2. Struktur dua perletakan sendi jepit (balok statis tak tertentu)

Struktur pembebanan mekanisme runtuh

Gambar 2.12 Mekanisme Keruntuhan Balok

Struktur ini memerlukan dua buah sendi plastis agar tercapai mekanisme keruntuhannya. Sendi plastis akan terbentuk pada titik momen maksimum dan tumpuan jepit.

3. Struktur dua perletakan jepit – jepit (balok statis tak tentu)

Struktur pembebanan mekanisme runtuh

Gambar 2.13 Mekanisme Keruntuhan Balok


(53)

35 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Struktur ini memerlukan tiga buah sendi plastis untuk mencapai mekanisme keruntuhannya. Sendi plastis terbentuk pada kedua tumpuan jepit dan titik momen maksimum.

4. Struktur jepit – bebas (balok kantilever)

Struktur pembebanan mekanisme runtuh Gambar 2.14 Mekanisme Keruntuhan Balok

Struktur ini hanya memerlukan sebuah sendi plastis untuk mencapai mekanisme keruntuhannya. Sendi plastis terbentuk pada tumpuan jepit struktur tersebut.

II.4.2 Bentuk Sendi Plastis

Panjang sendi plastis ( ) tergantung pada geometri struktur dan pembebanan yang diberikan pada struktur.

a. Bentuk sendi plastis pada balok pembebanan terpusat

Gambar 2.15 Bentuk sendi plastis pembebanan terpusat

13 . 2 ... ... ... ... ... ... ... ... 1

     −

= )

(


(54)

36 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

b. Bentuk sendi plastis pada balok pembebanan terbagi rata

Gambar 2.16 Bentuk sendi plastis pembebanan terbagi rata

14 . 2 .. ... ... ... ... ... ... ...

1 2

2

   

 

= )

(

II.4.3 Perhitungan Struktur berdasarkan Kekuatan Batas

Perhitungan struktur ketika mencapai kondisi runtuh didasarkan atas tiga kondisi berikut, yaitu :

1. Kondisi Leleh (' )

Kondisi leleh merupakan keadaan pada saat runtuh, dimana momen lentur dari suatu struktur tidak ada yang melampaui kapasitas momen plastisnya, yaitu Mp > Melastis.

2. Kondisi Keseimbangan ( - )

Kondisi keseimbangan merupakan kondisi dimana jumlah gaya gaya dan momen momen dalam keadaan seimbang adalah nol.

3. Kondisi Mekanisme ( )

Kondisi mekanisme merupakan suatu kondisi dimana sejumlah sendi plastis telah terbentuk dan cukup untuk mengubah sebagian ataupun seluruh struktur ke dalam kondisi mekanisme keruntuhannya.

Kondisi – kondisi di atas merupakan dasar dari teorema – teorema berikut :


(55)

37 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

1. Teorema Batas Bawah ( )

Teorema ini menetapkan atau menghitung distribusi momen dalam struktur berdasarkan kondisi keseimbangan dan leleh. Beban (factor beban λ) yang dihasilkan akan lebih kecil atau sama dengan harga yang sebenarnya λc.

λ ≤ λc

2. Teorema Batas Atas ( )

Teorema ini menetapkan atau menghitung distribusi momen dalam struktur berdasarkan kondisi keseimbangan dan mekanisme. Maka beban (factor beban λ) yang dihasilkan akan lebih besar atau sama dengan beban yang sebenarnya λc.

λ ≥ λc

Analisa struktur berdasarkan kekuatan batas, secara umum ada tiga cara yaitu ;

1. Cara Grafostatis

Cara ini meliputi penentuan secara grafostatis suatu bidangmomen dalam keadaan batas sedemikian rupa, sehingga dengan momen di setiap penampang tidak melampaui momen batas ( M < Mp), tercapai

suatu mekanisme keruntuhan. 2. Cara Mekanisme

Cara mekanisme merupakan cara yang lebih cepat untuk mendapatkan hasil dibandingkan dengan cara grafostatis, terutama pada struktur yang derajat kehiperstatisannya lebih banyak. Cara mekanisme mempergunakan prinsip kerja virtual.


(56)

38 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Prinsip kerja virtual adalah suatu cara yang meninjau keseimbangan energi dari struktur ketika mengalami mekanisme keruntuhannya. Dapat dikatakan bahwa energi dalam = energi luar. Persamaan prinsip kerja virtual dijelaskan berdasarkan persamaan berikut :

Σ Mp.θ = Σ PV.NV + Σ PH.NH

Dimana : Mp = Momen platis tampang

θ = Sudut Rotasi Sendi Plastis PV = Gaya Vertikal

PH = Gaya Horizontal

NV = Displacement Vertikal NH = Displacement Horizontal

3. Cara Distribusi Momen ( )

Cara distribusi momen mirip dengan metode distribusi cara cross, sehingga cara ini sering juga disebut metode distribusi momen plastis.

II.5 METODE NUMERIK

Metode numerik adalah suatu teknik penyelesaian yang diformulasikan secara matematis dengan cara operasi hitungan/aritmatik dan dilakukan secara berulang ulang dengan bantuan computer atau secara manual (hand calculation).

Dalam menganalisis suatu permasalahan yang didekati dengan menggunakan metode numerik, umumnya melibatkan angka angka dalam


(57)

39 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

jumlah banyak dan melewati proses perhitungan matematika yang cukup rumit.

Gambar 2.17 Grafik aproksimasi diferensiasi maju, mundur, dan tengah

Deret Taylor akan memberikan nilai hampiran bagi suatu fungsi pada suatu titik, berdasarkan nilai fungsi dan derivatifnya pada titik yang lain. Persamaan Deret Taylor yaitu :

(

)

( ) . ...2.15

! ) ( ... . ! 2 ) ( " ). ( ' ) ( ) ( 2 1 1 ( ) ) ) ) ) ) )+ ≈ − + − + + + +

Dalam metode numerik, persamaan diferensi hingga ( )

secara umum yaitu :

(

)

17 . 2 ... ... ... ... ... ... ... ... ... ) ( ' 16 . 2 ... ... ... ... ... 0 ) ( ) ( ) ( ' 1 1 1 ) ) ) ) ) ) ) ) = − + − − = + + +


(58)

40 Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol

dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Persamaan 2.16 dan 2.17 disebut sebagai persamaan diferensi hingga maju dari turunan pertama. Selanjutnya deret taylor dapat diperluas mundur untuk menghitung nilai sebelumnya berdasarkan pada suatu nilai sekarang.

) )

)

) . ...2.18

! 2 ) ( " ). ( ' ) ( ) ( 2

1 = − +

Dan bila dipotong setelah suku turunan pertama, maka akan diperoleh :

) )

) ) ( ) ( ) 0. ...2.18

(

' − −1 +

Persamaan 2.18b ini disebut diferensi hingga mundur dari turunan pertama. Bila persamaan 2.18a dan 2.16 dikurangkan maka akan didapat :

19 . 2 ... ... ... ... ... ... ... . 0 2 ) ( ) ( ) (

' ) )+1 − )−1 + 2

Persamaan 2.19 disebut diferensi hingga tengah dari turunan pertama. Sedangkan persamaan diferensi hingga maju turunan kedua yaitu :

( )

...2.20 0 ) ( ) ( . 2 ) ( ) (

" ) 2 2) 1 )

) = + − + − +

Selanjutnya dapat diturunkan diferensi mundur turunan kedua yaitu :

( )

...2.21 0 ) ( ) ( . 2 ) ( ) (

" ) )2 1 ) 2

) = − − − − +

Dan diferensi tengahnya adalah :

( )

...2.22 0 ) ( ) ( . 2 ) ( ) (

" ) = )+1 − 2))−1 +


(59)

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Kayu yang digunakan untuk penelitian ini adalah Bahan

tersebut akan diteliti sifat sifat fisis dan mekanisnya sehingga diperoleh karakteristik yang diperlukan untuk eksperimen nantinya.

Kayu yang diambil adalah kayu Kelapa dengan ukuran 4 x 4 inci2 dengan panjang bentang bersih 4,80 meter. Kayu tersebut akan diteliti sifat – sifat mekanis dan fisisnya sehingga diperoleh karakteristik yang diperlukan untuk pengujian komposit nantinya.

Kayu batangan tersebut dibiarkan kering udara sampai mencapai kadar air ± 15% untuk selanjutnya diambil pengujian sesuai dengan masing – masing jenis pengujian karakteristik dan pengujian komposit.


(60)

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Pengujian dan pemeriksaan yang akan dilakukan pada kayu tersebut mengacu kepada metode pengujian di Inggris BS 373 (1957) “Metode Pengujian Contoh Kecil Kayu”. (sumber : Desch, Ernest Harold; Timber : its structure, properties and utilization). Pengujian tersebut meliputi :

1. Pemeriksaan kadar air

2. Pemeriksaan berat jenis

3. Pengujian kuat tekan sejajar serat

4. Pengujian kuat lentur

5. Pengujian elastisitas

!

Pemeriksaan kadar air dari kayu dilakukan sedemikian rupa sehingga sifat dari benda uji itu mendekati sifat rata – rata dari kayu yang akan diperiksa. Oleh sebab itu, kayu yang akan digunakan diambil dari tempat yang sama. Benda uji dibuat berukuran 3 cm x 4,5 cm x 6,5 cm sebanyak 5 sampel.


(61)

"

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Gambar 3.1 : Sampel pengujian kadar air

Setelah benda uji dibuat, maka dilakukan penimbangan berat masing – masing benda uji dan dicatat sebagai berat awal. Penimbangan dilakukan setiap hari dalam beberapa hari berturut – turut. Metode pengeringan yang dilakukan adalah metode kering udara, yaitu benda dibiarkan didalam ruangan dengan suhu kamar dan benda terlindung dari pengaruh cuaca, seperti panas dan hujan. Pada saat benda uji menunjukkan berat yang tetap atau turun lagi maka berat benda uji dapat dianggap sebagai berat akhir dan kayu dianggap telah kering udara. Apabila berat benda uji terus menurun (berkurang), maka kayu belum dapat dianggap kering udara atau kayu masih dianggap basah. Untuk menentukan secara kasar apakah kadar air kayu sudah di bawah 30 % atau belum, dapat digunakan rumus pendekatan seperti di bawah ini :

=1,15 − 100 %

Dimana :

W = Kadar lengas kayu (%)

Gx = Berat sampel mula – mula (gr)

Gku = Berat sampel kering udara (gr)


(62)

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Bila berat benda uji sudah menunjukkan angka yang konstan, maka kayu tersebut sudah dapat dianggap kering udara, sehingga kadar air kayu dapat diperoleh dengan cara :

= − 100 %

# $

Dalam pemeriksaan berat jenis kayu, sampel yang digunakan harus sedemikian rupa sehingga dapat mendekati sifat rata – rata dari kayu yang diteliti. Sampel dibuat dengan ukuran 2,5 cm x 5 cm x 7,5 cm yang telah kering udara (kadar air 15 %).

Gambar 3.2 : Sampel pengujian untuk menentukan berat jenis

Sampel kemudian ditimbang dan dicatat beratnya. Untuk perhitungan sebagai berat jenis kayu diambil angka rata –rata dari semua sampel dan perbedaan antara berat jenis yang tertinggi dan yang terendah tidak boleh lebih dari 100 % berat terendah. Maka dapat dikatakn berat jenis kayu adalah


(63)

%

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

perbandingan berat kayu pada keadaan kering udara dengan volume kayu pada kondisi tersebut (dalam satuan gr / cm³) atau

=

Dimana : BJ = Berat Jenis kayu (gr / cm³)

Wx = Berat sampel kayu kering udara (gr)

Vx = Volume sampel (cm³)

" ! #

Pengujian kuat tekan dilakukan dengan menggunakan peralatan mesin tekan (Compression Machine) dan dilakukan untuk mendapatkan nilai kuat tekan yang mampu diterima oleh kayu tersebut sampai batas keruntuhan. Pengujian kuat tekan yang akan diuji adalah pengujian kuat tekan kayu sejajar serat, dimana arah serat sejajar dengan memanjang sampel. Pengujian dilakukan pada sampel kering udara (kadar air ± 15 %)


(64)

&

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Gambar ".3 : Sampel untuk pengujian kuat tekan

Sampel dimasukkan kedalam mesin dengan sisi 2 cm x 2 cm x 6 cm menghadap ke atas dan ke bawah. Kemudian dilakukan penekanan secara perlahan. Penekanan dilakukan sampai pembacaan dial berhenti atau turun dan menunjukkan angka yang tetap, yaitu pada saat terjadi keruntuhan pada sampel. Besarnya nilai pembacaan akhir kemudian dicatat sebagai beban tekan dan merupakan rumus berikut:

σtk //=

Dimana : σtk // = Tegangan tekan sejajar serat (kg / cm²)

P = Beban tekan maksimum (kg)

A = Luas bagian yang tertekan (cm²)


(65)

'

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

! # # # # (

!) * # #

Untuk penelitian kuat lentur ini menggunakan sampel kayu berukuran 30 cm x 2 cm x 2 cm dengan arah serat kayu dibuat arah memanjang sampel (lihat Gambar 3.4).

Gambar 3.4 Sampel penelitian kuat lentur

Sampel diletakkan pada dua perletakan sederhana dan diberi gaya P terpusat pada tengah bentang yang secara bertahap ditambah besarnya. Pada tengah bentang sampel dipasang alat pengukur penurunan. Alat ini berupa

dial gauge merek yang dapat melakukan pembacaan penurunanan

pada sampel yang dibebani dan menujukkan pergerakan yang terjadi sampai dengan ketelitian 0.01 mm (lihat Gambar III.5).

Gambar 3.5 Penempatan dial beban pada sampel


(66)

+

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Beban P secara bertahap ditambah besarnya dan dicatat besarnya penurunan yang terjadi. Besarnya P untuk memperoleh tegangan lentur adalah besarnya beban P yang diberikan pada saat benda uji mengalami patah dan perhitungan ini nantinya menghasilkan kuat lentur pada kondisi ultimate.

2 6 1

4 1

=

σ

Dimana :

σ

b = Tegangan lentur yang terjadi (kg/cm2)

P = Beban pada saat mencapai kondisi ultimate (kg)

L = Panjang bentang = 30 cm

b = Lebar sampel = 2 cm

h = Tinggi sampel = 2 cm

Dan untuk setiap besar beban yang bekerja diperoleh besarnya penurunan (f). Dari kedua parameter ini, P ( beban maksimum ) dan f ( penurunan ) dapat diperoleh nilai elastisitas material yang menurut persamaan adalah sebagai berikut:

48 3

=

ε σ

=


(67)

,

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Dimana :

f = Penurunan (cm)

L = Panjang bentang = 30 cm

b = Lebar sampel = 2 cm

h = Tinggi sampel = 2 cm

σ = Tegangan lentur (kg/cm2)

ε = Regangan yang terjadi

" ) ) - #

Model dibuat 3 (tiga) sampel berbeda. Beban P diberikan secara bertahap dan pada tiap tahap pembebanan dicatat lendutan yang terjadi pada titik – titik dimana dial gauge terpasang.

Hubungan antara beban (P) dan lendutan (J) dituangkan dalam bentuk grafik dan akan memberikan informasi teknis berupa kekuatan dan kekakuan komponen struktur lentur.


(68)

%.

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Model model sampel tersebut adalah sebagai berikut :

) /

Dimensi sampel (b x h) adalah (4” x 6”)

Panjang Sampel adalah 3 meter

) /

Dimensi sampel (b x h) adalah (4” x 4”)

Panjang Sampel adalah 3 meter

0 " ' ) /

0 " & ) /


(69)

%

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

) /

Dimensi sampel (b x h) pada ujung bentang adalah (4” x 4”) Dimensi berubah secara Linier,

sehingga dimensi pada tengah bentang (b x h) adalah (4” x 6”)

Panjang Sampel adalah 3 meter

0 " + ) /


(70)

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

!

" # ! ! $

% " "

Gambar 4.1 perletakan sendi rol beban terpusat Dari gambar di atas di peroleh :

Reaksi di A :

2 1

+ =

Reaksi di B :

2 1

+ =

Momen di x ( 0 < x < L ) :


(71)

&

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

1 . 4 ... ... ... ... ... ... ... ... ... 2

1

=

Dari persamaan 2.8 :

=

= 2

2

1

Sehingga persamaan kelengkungan menjadi :

2 . 4 ... ... ... ... ... ... ... ... ... 2

1 1

=

' % " " (%

Gambar 4.2 Keadaan elastoplastis

Berdasarkan persamaan (2.7), maka persamaan kelengkungan

pada keadaan elastoplastis :

3 . 4 ... ... ... ... ... ... ... ... 2 / 1

1 σ

α =

) % " "

Gambar 4.3 Keadaan Plastis


(72)

*

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Berdasarkan persamaan (2.7), maka persamaan kelengkungan pada keadaan plastis :

2 / 1

1 σ

α

=

Pada kondisi plastis α = 0

4 . 4 ... ... ... ... ... ... ... ... ... 1

∞ =

" # ! ( ! $

% " "

Gambar 4.4 Perletakan sendi rol beban terpusat


(73)

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Adapun potongan gelagar non prismatis gambar di atas di perlihatkan pada gambar berikut :

Gambar 4.5 penampang batang

Pada gambar 4.5 di atas, ditentukan nilai y :

Gambar 4.6 penampang non prismatis

5 . 4 ... ... ... ... ... ... ... )... (

2 2 1

2 1

2 1

− =

− =

Nilai Dx = D2 + y

Maka ;

) (

2

2 1

2+ −

=

penampang batang

di titik A

penampang batang

di titik x

penampang batang

di titik C


(74)

+

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

6 . 4 .. ... ... ... ... ... ... )

2 1 ( ) ( 2

2

1 + −

=

Dari gambar 4.4 di peroleh :

Reaksi di A :

2 1 + =

Reaksi di B :

2 1 + =

Momen di x ( 0 < x < L ) :

7 . 4 ... ... ... ... ... ... ... ... ... 2

1 =

Dari persamaan 2.4 : =

= 22

1

Sehingga persamaan kelengkungan menjadi :

8 . 4 ... ... ... ... ... ... ... ... ... 2

1 1

=

' % " " (%

Gambar 4.7 Keadaan elastoplastis


(75)

,

Nanda Wardhana : Analisa Lendutan Balok Kayu Non Prismatis Perletakan Sendi – Rol dengan Metode Plastis (Eksperimen). Teknik Sipil USU, 2011

Berdasarkan persamaan (2.3), maka persamaan kelengkungan pada keadaan elastoplastis :

9 . 4 ... ... ... ... ... ... ... ... 2 / 1

1 σ

α

=

Dimana;

2

1 )

2 1 ( ) ( 2

− + =

Maka :

10 . 4 ... ... ... ... ... ... ) (

2 1

1

2 ) 2 1 ( ) 1 ( 2

− +

= σ

α

) % " "

Gambar 4.8 Keadaan plastis

Berdasarkan persamaan (2.7), maka persamaan kelengkungan

pada keadaan plastis :

2 / 1

1 σ

α

=

Pada kondisi plastis α = 0


(1)

Gambar 7 : Persiapan Pengujian Sampel I

Gambar 8 : Dial Gauge Sampel I

Gambar 9 : Persiapan Pengujian Sampel I


(2)

Gambar 10 : Runtuh pada Sampel I

Gambar 11 : Runtuh pada Sampel I beserta model

Gambar 12 : Persiapan pengujian Sampel II


(3)

Gambar 13 : Hydraulic Jack beserta Model

Gambar 14 : Persiapan Dial Gauge

Gambar 15 : Persiapan pengujian Sampel II


(4)

Gambar 16 : Pengujian Sampel II

Gambar 17 : Beban ultimate terlampaui

Gambar 18 : Runtuh pada Sampel II


(5)

Gambar 19 : Persiapan Pengujian Sampel III

Gambar 20 : Pembebanan Sampel III

Gambar 21 : Sampel III runtuh


(6)

Gambar 22 : Runtuhan sampel III

Gambar 23 : Pencatatan Hasil Eksperimen

Gambar 24 : Sampel III Pasca Pengujian