Energi Angin Wind Shear

9

2.2 Energi Angin

Angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah. Perbedaan tekanan udara disebabkan oleh adanya perbedaan suhu udara akibat terjadinya pemanasan atmosfir yang tidak merata oleh sinar matahari. Udara yang bergerak ini memiliki kecepatan tertentu, sehingga udara tersebut memiliki energi kinetik. Daya P yang dikandung oleh angin dengan massa m, dalam volum silinder yang mempunyai luas A, dalam waktu t, dengan kerapatan udara ρ, dan volume silinder Vo adalah merupakan energi kinetik E k angin dibagi waktu, secara matematis dapat dituliskan sebagai berikut: t mu P 2 2 1 k t E   2.1 L A V .  L A V m . .     Substitusi nilai massa m ke persamaan 2.1. Kecepatan angin, u = Lt, melalui luasan A selama waktu t, sehingga persamaan daya diperoleh : 3 2 2 2 1 k . . 2 1 . 2 1 . . . t E u A u t L A t u L A P              2.2 Daya per satuan luas, sebagai potensi daya angin atau kerapatan daya angin wind power density, yaitu : 3 . 2 1 u P   2.3 u Gambar 2.2 Aliran angin melalui silinder dengan luas A Sumber: Vaughn Nelson Universitas Sumatera Utara 10

2.3 Wind Shear

Wind shear adalah perubahan arah atau kecepatan angin saat melalui jarak tertentu. Wind shear dapat terjadi secara horizontal maupun vertical. Perubahan kecepatan angin terhadap ketinggianhorizontal wind shearmerupakan faktor utama dalam memperkirakan produksi energi melalui turbin angin. Telah dilakukan pengukuran perubahan kecepatan angin terhadap ketinggian yang disebabkan perbedaan kondisi atmosfer. Gambar 2.3 Wind shear dan jenis-jenisnya Sumber: Vaughn Nelson Metode umum yang memperkirakan kecepatan angin untuk ketinggian yang lebih tinggi dengan mengetahui kecepatan angin pada ketinggian yang lebih rendah disebut power law. Power law untuk wind shear adalah:         H H u u 2.4 Dimana : u = kecepatan angin yang telah diukur pada ketinggian tertentu H = ketinggian pada kecepatan angin u H = ketinggian. Eksponen wind shear α, berkisar 17 0.14 untuk atmosfer dalam kondisi stabil. Bagaimanapun nilai α berubah – ubah tergantung pada daerah dan kondisi Universitas Sumatera Utara 11 atmosfer. Dari persamaan 2.4 perubahan kecepatan angin terhadap ketinggian dapat diperkirakan seperti pada gambar 2.3, dengan catatan nilai α= 0,14.Dimana eksponen wind shear 0,14 merupakan standard dunia yang diukur pada ketinggian 10 m dan pada saat pengukuran kondisi cuaca stabil, sehingga dengan menggunakan data eksponen wind shear α pada ketinggian 10 m ini, kita dapat memperkirakan potensi daya angin sampai pada ketinggian 50 m. Gambar 2.4 Wind shear, perubahan kecepatan angin terhadap ketinggian. Dihitung untuk kecepatan angin 10 ms pada ketinggian 10 m, α= 0,14. Sumber: Vaughn Nelson

2.4 Pengertian Turbin Angin

Dokumen yang terkait

Simulasi Pengaruh Jumlah Sudu Dan Tip Speed Ratio Terhadap Performansi Turbin Angin Tipe Darrieus-H Menggunakan Profil Sudu Naca 0018

4 48 106

Simulasi Performansi Turbin Angin Tipe Darrieus-H Menggunakan Profil Sudu Naca 4415 Terhadap Variasi Panjang Chord Dan Tip Speed Ratio Dengan Software Cfd

12 65 125

Uji Performansi Turbin Angin Tipe Darrieus-H Dengan Profil Sudu Naca 0012 Dan Analisa Perbandingan Efisiensi Menggunakan Variasi Jumlah Sudu Dan Sudut Pitch

2 86 108

Uji Performansi Turbin Angin Tipe Darrieus-H Dengan Profil Sudu Naca 0018 Dan Analisa Perbandingan Efisiensi Menggunakan Variasi Jumlah Sudu Dan Sudut Pitch

5 59 106

BAB II TINJAUAN PUSTAKA 2.1 Potensi Angin Energi merupakan suatu kekuatan yang dimiliki oleh suatu zat sehingga - Uji Performansi Turbin Angin Tipe Darrieus-H Dengan Profil Sudu Naca 4415 dan analisa perbandingan menggunakan variasi jumlah sudu dan sudut

0 0 24

UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 4415 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH SKRIPSI

1 2 13

BAB II TINJAUAN PUSTAKA 2.1 Energi Angin - Uji Performansi Turbin Angin Tipe Darrieus-H Dengan Profil Sudu Naca 0018 Dan Analisa Perbandingan Efisiensi Menggunakan Variasi Jumlah Sudu Dan Sudut Pitch

1 1 18

UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 0018 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH SKRIPSI

0 0 14

BAB II TINJAUAN PUSTAKA 2.1 Energi Angin - Uji Performansi Turbin Angin Tipe Darrieus-H Dengan Profil Sudu Naca 0012 Dan Analisa Perbandingan Efisiensi Menggunakan Variasi Jumlah Sudu Dan Sudut Pitch

1 1 21

UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 0012 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH SKRIPSI

0 0 13