Topografi - DEM - SRTM

melebihi kapasitas. Luapan air sungai ini akan segera menggenangi daerah-daerah rendah yang berada di sekitar sungai floodplain. Selain curah hujan, keadaan fisiografis daerah tangkapan terutama ketinggian, kemiringan dan jenis tutupan vegetasi akan menentukan kerawanan wilayah tersebut untuk mengalami penggenangan inundation Rodda J 1974. Daerah dengan nilai elevasi tinggi mempunyai kecenderungan yang kecil untuk mengalami banjir karena air akan segera mengalir ke daerah yang lebih rendah dibawahnya. Sedangkan kemiringan lahan berpengaruh ketika menangkap masukan air, air yang datang pada lahan dengan kemiringan curam hanya memiliki sedikit waktu untuk proses infiltrasi ke dalam tanah sehingga sebagian besar air akan lolos dalam bentuk limpasan dibanding permukaan lahan yang datar atau landai. Jenis penutupan lahan dengan vegetasi rapat memiliki kemampuan menahan air dengan menyerap air ke dalam tanah dan menghambat proses limpasan, sedangkan permukaan daerah urban kebal terhadap air dengan drainase yang jarang didesain untuk mampu menampung banjir. Selain itu permeabilitas tanah yang menunjukkan kemampuan tanah untuk melalukan air dalam bentuk infiltrasi juga memiliki pengaruh dimana tanah dengan kecepatan permeabilitas lambat akan mendukung terjadinya penggenangan. Salah satu tahapan dalam proses analisis kerawanan yaitu identifikasi wilayah yang rawan terhadap bencana dan populasi yang yang mungkin terkena dampak bencana Pine 2009. Dengan mengetahui tingkat kerawanan suatu wilayah terhadap banjir maka dapat dicegah dengan tidak menggunakan wilayah tersebut untuk kegiatan produksi agrikultur, pemukiman atau kegiatan manusia lainnya. Oleh karena itu informasi kerawanan banjir dapat sangat bermanfaat jika diterapkan dalam pengambilan keputusan dalam perencanaan tata guna lahan. Jika wilayah tersebut tetap akan digunakan untuk kegiatan agrikultur, informasi ini dapat digunakan untuk kontrol dan manajemen banjir untuk mendukung kesiapan dalam antisipasi kejadian banjir seperti persiapan pengalihan banjir, atau penanaman varietas yang tahan terhadap rendaman.

2.2. Topografi - DEM - SRTM

Topografi adalah karakteristik suatu permukaan atau disebut relief. Untuk wilayah daratan yang dimaksud adalah bukit, lembah dan dataran yang menyusun daratan tersebut. Dengan demikian yang diperhitungkan adalah ketinggian dari masing-masing lokasi. Pengetahuan mengenai bentuk permukaan bumi diperlukan dalam berbagai aplikasi salah satunya yaitu dalam pemodelan hidrologi dan limpasan permukaan. Topografi memiliki peranan penting dalam distribusi dan fluks aliran air baik dalam sistem natural atau buatan manusia Bedient dan Huber 2002. Topografi suatu permukaan daratan dalam SIG dapat disajikan dengan data elevasi digital. Terdapat dua parameter medan yang bisa dihasilkan dari data elevasi yaitu slope dan aspek. Slope didefinisikan sebagai laju perubahan ketinggian untuk setiap jarak horizontal, biasa diukur dalam persen atau derajat. Sementara aspek adalah arah sudut horizontal dan vertikal permukaan menghadap. Data elevasi digital adalah kumpulan hasil pengukuran elevasi untuk lokasi-lokasi yang terdistribusi pada permukaan daratan. Berbagai istilah digunakan dalam maksud yg sama seperti Digital Terrain Data DTD, Digital Terrain Models DTM, Digital Elevation Model DEM dan Digital Terrain Elevation Data DTED. Beberapa metode dapat digunakan untuk menghasilkan data DEM seperti yang dilakukan oleh USGS yaitu menggunakan metode fotogrametri stereomodel atau melalui citra penginderaan jauh satelit. Metode dalam mengambil dan menyimpan data elevasi digital dikategorikan menjadi empat : grid, kontur, profil dan TIN Triangulated Irregular Network. Data DEM biasa disajikan dalam format grid dimana terdapat satu nilai elevasi untuk setiap wilayah berjarak sama atau disebut dengan grid cells Aronoff 1989. SRTM Shuttle Radar Topographic Mission merupakan misi kerjasama NGA National Geospatial-Intelligence Agency dengan NASA National Aeronautics and Space Administration dalam pemetaan tiga dimensi permukaan bumi dengan memanfaatkan teknologi penginderaan jauh sensor aktif, yaitu menggunakan sistem radar interferometrik yang diterbangkan oleh Space Shuttle Endeavor STS-99 pada Februari 2000 Rodriguez et al 2005. Dua sistem radar interferometrik, yaitu X-band dan C-band mengorbit dan memetakan bumi selama 11 hari dan merekam data yang kemudian diolah oleh JPL Jet Propulsion Laboratory untuk menghasilkan produk data topografi dengan cakupan wilayah diantara 60 o lintang utara dan selatan atau sekitar 80 dari permukaan daratan bumi. Jenis data SRTM yaitu berupa grid, dan jenis grid yang digunakan yaitu ortogonal dimana ukuran sel grid tidak dinyatakan dalam satuan jarak sebenarnya meter atau kaki namun dalam “∆ lintang” dan “∆ bujur”, keduanya didefinisikan menggunakan istilah arc-seconds, arc- minutes, dan lainnya. Ukuran satu arc- second pada daerah ekuator memiliki jarak yang hampir sama, semakin menjauh dari ekuator ukuran satu arc-second longitude bujur semakin menyempit. Pengaturan jarak sample pada set data SRTM utama yaitu 1 arc-second lintang dan bujur sekitar 30m di ekuator. Dengan persetujuan NGA dan NASA produk ini didistribusikan dengan secara terbatas. Produk kedua dengan pengaturan jarak 3 arc-second dihasilkan dengan merata-ratakan data 1 arc-second dan tersedia untuk di download atau dipesan oleh publik Becek 2008. Data DEM tersebut berupa data integer 16-bit signed dalam raster biner sederhana. Tidak terdapat header atau trailer yang tercantum dalam citra. 2.3. Curah Hujan - TRMM Curah hujan sebagai salah satu bentuk presipitasi merupakan komponen utama iklim bumi. Terbentuknya presipitasi melalui kondensasi uap air akan melepaskan panas laten ke atmosfer yang akan menjadi penggerak sirkulasi armosfer bumi. Namun pengaruh curah hujan tidak terbatas hanya pada sistem iklim bumi tapi juga terhadap siklus air dan kehidupan manusia. Curah hujan dapat digunakan sebagai masukan dalam perhitungan menyangkut permasalahan di bidang hidrologi Linsley et al 1980. Selain itu presipitasi adalah sumber air utama bagi hampir seluruh penduduk dunia, bahkan hanya sedikit perubahan dapat sangat berpengaruh pada kehidupan sehari- hari manusia. Meteorologi adalah dasar yang tidak dapat dipisahkan dalam kajian hidrologi. Pengetahuan dasar mengenai meteorologi dan hidrologi memiliki cakupan penerapan yang luas seperti prediksi hujan dan banjir, kontrol sungai dan mengatasi masalah sumberdaya air. Indonesia memiliki iklim monsoon yaitu iklim dengan dua musim, musim basahhujan serta musim keringkemarau yang saling bergilir sepanjang tahun. Posisi Indonesia terletak di daerah tropis yang merupakan tempat terjadinya konveksi secara besar-besaran. Tingginya kandungan uap air yang didukung dengan faktor-faktor lainnya menyebabkan tingginya rata-rata curah hujan di daerah Indonesia Handoko 1995. Informasi intensitas dan durasi curah hujan diperlukan untuk menentukan respon dari daerah aliran sungai terhadap hujan. Secara umum pengukuran curah hujan dan intensitas curah hujan telah dilakukan menggunakan penakar hujan di permukaan. Namun dikarenakan berbagai permasalahan seperti biaya pendirian dan operasional yang tinggi, terbatasnya kemampuan pengamatan untuk daerah pegunungan, dan kemungkinan tidak tercatatnya data maka mulai dikembangkan metode baru pendugaan curah hujan memanfaatkan yang teknologi berbasis satelit spaceborne Sene 2010 Satelit TRMM Tropical Rainfall Measuring Mission diluncurkan pada November 1997 untuk memenuhi kebutuhan akan data hujan global khususnya di daerah tropis. Dalam NASA 2011 disebutkan bahwa TRMM dibekali dengan sensor PR Precipitation Radar yang merupakan radar presipitasi antariksa yang pertama dibuat, sensor ini dapat memantau distribusi presipitasi secara tiga dimensi di atas daratan maupun lautan. Sensor yang kedua yaitu TMI TRMM Microwave Imager yang dapat menghasilkan data berupa integrated column precipitation content, air cair dalam awan could liquid water, es dalam awan cloud ice, intensitas hujan dan tipe hujan. Sensor VIRS Visible and Infrared Scanner memiliki fungsi untuk memantau liputan awan, jenis awan dan temperatur puncak awan. Sensor lainnya yaitu LIS Lightning Imaging Sensor dan CERES Cloud and Earth’s Radiant Energy System. Data Hujan yang dihasilkan oleh TRMM memiliki tipe dan tingkatan yang beragam yang dimulai dari level 1 hingga level 3. Data level 1 merupakan data mentah raw yang telah dikalibrasi dan terkoreksi geometrik. Level 2 merupakan data yang telah berupa gambaran parameter geofisik hujan pada resolusi spasial yang sama akan tetapi masih dalam kondisi asli keadaan hujan saat satelit melewati daerah yang direkam. Data level 3 sudah memiliki nilai- nilai hujan, khususnya kondisi hujan bulanan yang merupakan penggabungan dari data level 2. Untuk mendapatkan data hujan dalam bentuk milimeter mm sebaiknya menggunakan level 3 dengan resolusi spasial 0,25 o x0,25 o dan resolusi temporal 3 jam. Pada akhirnya data TRMM akan digabungkan dengan hasil pengukuran satelit-satelit lain untuk menghasilkan produk TRMM Multisatellite Precipitation Analysis TMPA yang memiliki tingkat keakurasian yang lebih baik NASDA 2001. 2.4. Tekstur Tanah Komposisi umum bahan penyusun tanah terdiri dari mineral, bahan organik, kelembaban tanah, dan udara. Terdapat tiga macam klasifikasi ukuran partikel tanah yaitu pasir sand 0,05 mm, lempung silt 0,002 – 0,05 mm dan liat clay 0,002 mm. Berbagai komposisi dari ketiga jenis partikel ini akan membentuk kelas tekstur tanah. Tekstur tanah merupakan salah satu kondisi fisiografis yang mempengaruhi limpasan permukaan selain dari kelerengan dan ketinggian Sharp Sawden 1984. Tanah dengan kandungan liat tinggi disebut bertekstur halus, sebaliknya jika kandungan pasir tinggi maka disebut bertekstur kasar. Tekstur tanah akan berpengaruh pada porositas, struktur dan permeabilitas tanah. Semakin halus partikel tanah semakin banyak pori yang terbentuk menyebabkan tanah mudah menahan air impermeabel, sedangkan semakin kasar tekstur tanah maka tanah akan mudah kehilangan air. Dalam hubungannya dengan siklus hidrologi, yaitu ketika presipitasi jatuh pada permukaan tanah, air mungkin akan diserap ke dalam tanah atau akan mengalir sebagai limpasan di atas permukaan. Bagaimana respon air hujan ketika menyentuh permukaan tanah ditentukan oleh sifat horizon permukaan tanah itu sendiri. Laju infiltrasi tergantung pada sifat fisik tanah terutama permeabilitas. Permeabilitas tanah mengatur proses pembasahan tanah dan neraca air, termasuk limpasan permukaan. Semakin tinggi kandungan liat akan menyebabkan semakin rendahnya permeabilitas, sebaliknya semakin tinggi porositas akan meningkatkan permeabilitas. Faktor lainnya yaitu kandungan air tanah, tanah yang telah jenuh oleh air akan menghambat proses infiltrasi. Perbedaan sifat tanah pada setiap lapisannya berakibat pada berbedanya nilai permeabilitas pada setiap kedalaman Pitty 1979. Komputasi limpasan langsung memerlukan nilai estimasi karakteristik infiltrasi pada berbagai jenis tanah pada area drainase. Peta tanah yang menggambarkan sifat-sifat tanah merupakan sumber data utama bagi pendugaan infiltrasi. Satuan pemetaan tanah soil-mapping unit adalah satuan terkecil dalam peta tanah yang dapat diberikan informasi sifat-sifat tanah Bedient Huber 2002. Beberapa penyesuaian harus dilakukan jika mengestimasi infiltrasi berdasarkan database tanah yang digeneralisasi bagi pemodelan hidrologi. Untuk memperoleh parameter-parameter infiltrasi dari sifat tanah membutuhkan reklasifikasi dari soil mapping unit menjadi parameter yang berarti bagi model hidrologi. 2.5. Tutupan lahan land-cover Menurut Ward dan Elliot 1985 pengaruh jenis penggunaan lahan dan tutupan vegetasi terhadap infiltrasi dikategorikan sebagai kondisi permukaan soil-surface, berlainan halnya dengan kondisi tekstur tanah yang merupakan kondisi bawah permukaan sub-surface. Jenis tutupan lahan akan mempengaruhi laju infiltrasi air hujan. Respon curah hujan yang jatuh di permukaan akan ditentukan pertama oleh jenis permukaan baru kemudian oleh kondisi fisik dari lapisan tanah. Limpasan permukaan merupakan fenomena yang terjadi ketika intensitas hujan melampaui kecepatan air untuk penetrasi ke dalam water table atau disebut dengan kapasitas infiltrasi. Faktor yang mempengaruhi limpasan terbagi dua yaitu klimatologis dan fisiografis Sharp Shawden 1984. Faktor klimatologis berupa masukan hujan, curah hujan yang tinggi dalam periode singkat akan menyebabkan segera terlampauinya kapasitas infistrasi sehingga air akan banyak melimpas menuju aliran sungai menyebabkan semakin tingginya debit yang berakibat pada banjir. Sementara faktor fisiografis meliputi jenis tanah dan kondisi permukaan DAS yang berpengaruh langsung pada kapasitas infiltrasi. Permukaan dengan tutupan vegetasi akan mempengaruhi transpirasi dan intersepsi, sehingga diketahui secara umum bahwa limpasan pada daerah hutan jauh lebih kecil dibanding daerah agrikultur atau terbangun. Dibandingkan dengan daerah lahan terbuka, daerah bervegetasi memiliki kemampuan untuk mengurangi limpasan permukaan. Vegetasi meningkatkan struktur tanah dan megurangi kandungan air tanah sehingga meningkatkan jumlah air yang dapat terinfiltrasi. Pepohonan dan tanaman berakar dalam biasanya mengkonsumsi lebih banyak air tanah melalui evepotranspirasi dibanding tanaman berakar dangkal, demikian limpasan di daerah tersebut menjadi lebih sedikit Ward Elliot 1995.

2.6. Penginderaan