Real Time Multivariate MJO seri 1 dan 2 RMM1 dan RMM2 Prakiraan dengan

2.4 Real Time Multivariate MJO seri 1 dan 2 RMM1 dan RMM2

Real Time Multivariate MJO seri 1 dan 2 RMM1 dan RMM2 merupakan suatu indeks musiman untuk memonitor pergerakan MJO. Hal ini didasarkan pada sepasang fungsi ortogonal EOFs dari gabungan rata-rata angin zonal 850-hPa, 200-hPa, dan data observasi satelit Outgoing Longwave Radiation OLR. Proyeksi data dilakukan dengan menghilangkan komponen siklus tahunan dan variabilitas komponen interannual Wheller dan Hendon, 2004. RMM1 dan RMM2 dapat digunakan dalam berbagai kepentingan misalnya untuk menentukan onset monsun dan peluang terjadinya curah hujan ekstrim. Peramalan MJO dapat menggunakan indeks RMM1 dan RMM2. MJO dikatakan dalam fase aktif jika: Gambar 6 Diagram phase MJO global hasil penurunan RMM1 dan RMM2 Sumber: Wheller dan Hendon, 2004. Lokasi keberadaan dapat dilihat dalam diagram dua dimensi fase pergerakan MJO yaitu dengan RMM1 dan RMM2. Terdapat 8 fase pergerakan MJO yaitu fase-8,1 di belahan bumi bagian barat dan Afrika, fase-2,3 di Samudra Hindia, fase-4,5 di Benua Maritim Indonesia, fase-6,7 di kawasan Pasifik barat. Data harian RMM1 dan RMM2 yang tersedia adalah dari tanggal 1 Juni 1974 berkelanjutan hingga saat ini.

2.4 Prakiraan dengan

Time Series ARIMA Autoregressive Integrated Moving Average merupakan salah satu model peramalan yang berbasis time series yang dikembangkan oleh Box dan Jenkins 1976. Metode ARIMA memiliki keunggulan dibanding metode lainnya, yaitu metode Box-Jenkins disusun secara logis dan secara statistik akurat, metode ini memasukkan banyak informasi dari data historis, dan metode ini menghasilkan kenaikan akurasi peramalan dan pada waktu yang sama menjaga jumlah parameter seminimal mungkin Jarret, 1991 Metode ini menggunakan pendekatan iteratif yang mengindikasikan kemungkinan model yang bermanfaat. Model terpilih, kemudian dicek kembali dengan data historis apakah telah mendiskripsikan data tersebut dengan tepat. Model terbaik akan diperoleh apabila residual antara model peramalan dan data historis memiliki nilai yang kecil, distribusinya random, dan independen. Analisis deret waktu seperti pedekatan Box- Jenkins, mendasarkan analisis pada data deret waktu yang stasioner. Penelitian sebelumnya yaitu Evana 2009 menggunakan metode ARIMA untuk memprediksi nilai RMM1 dan RMM2 menunjukkan bahwa model ARIMA dapat mengenali pola RMM1 dan RMM2 dengan baik.

III. METODOLOGI

Dokumen yang terkait

Pengaruh Indian Ocean Dipole (IOD) terhadap propagasi Madden Julian Oscillation (MJO)

3 27 31

Prediction Model Development Madden Julian Oscillation (MJO) based on the results of data analysis Real Time Multivariate MJO (RMM1 and RMM2).

1 8 123

Pengembangan Model Indeks Monsun (Monsoon) Indonesia (IMI) Berbasis Hasil Analisis Data WPR (Wind Profile Radar)

2 7 84

Respon Suhu Permukaan Laut (SPL) dan Klorofil-a terhadap Madden-Julian Oscillation (MJO) di Laut Indonesia

2 12 35

PENGEMBANGAN MODEL PREDIKSI MADDEN-JULIAN OSCILLATION (MJO) BERBASIS HASILANALISIS DATA WIND PROFILER RADAR (WPR)

0 4 11

IDENTIFIKASI MADDEN JULIAN OSCILLATION (MJO) UNTUK PREDIKSI PELUANG BANJIR TAHUNAN DI SUB DAS SOLO HULU Identifikasi Madden Julian Oscillation (MJO) Untuk Prediksi Peluang Banjir Tahunan Di Sub Das Solo Hulu Bagian Tengah (2007 – 2012).

0 1 15

PENDAHULUAN Identifikasi Madden Julian Oscillation (MJO) Untuk Prediksi Peluang Banjir Tahunan Di Sub Das Solo Hulu Bagian Tengah (2007 – 2012).

0 2 19

DAFTAR PUSTAKA Identifikasi Madden Julian Oscillation (MJO) Untuk Prediksi Peluang Banjir Tahunan Di Sub Das Solo Hulu Bagian Tengah (2007 – 2012).

0 2 4

IDENTIFIKASI MADDEN JULIAN OSCILLATION (MJO) UNTUK PREDIKSI PELUANG BANJIR TAHUNAN DI SUB DAS SOLO HULU Identifikasi Madden Julian Oscillation (MJO) Untuk Prediksi Peluang Banjir Tahunan Di Sub Das Solo Hulu Bagian Tengah (2007 – 2012).

0 1 13

Karakteristik Madden-Julian Oscillation (MJO) Ketika El-Nino Southern Oscillation (ENSO) | Muhammad | Wahana Fisika 9376 19201 1 PB

1 2 24