1. Uji Normalitas
Pengujian ini dimaksudkan untuk mengetahui apakah dalam model regresi, variabel pengganggu atau residual memiliki distribusi normal. Adapun uji
normalitas dapat dilakukan dengan dua cara yaitu analisis garfik dan statistik.
a. Analisis Grafik
Analisis grafik dapat digunakan dengan dua alat, yaitu grafik histogram dan grafik P-P Plot. Data yang baik adalah data yang memiliki pola distribusi normal.
Pada grafik histogram, data yang mengikuti atau mendekati distribusi normal adalah distribusi data dengan bentuk lonceng. Pada grafik P-P Plot, sebuah data
dikatakan berdistribusi normal apabila titik-titik datanya tidak menceng ke kiri atau ke kanan, melainkan menyebar di sekitar garis diagonal. Berikut hasil uji
normalitas dengan menggunakan analisis grafik.
Gambar 4.1 Uji Normalitas
Sumber: Hasil Pengolahan Data dengan SPSS
Universitas Sumatera Utara
Gambar 4.2 Uji Normalitas
Sumber: Hasil Pengolahan Data dengan SPSS Dengan melihat tampilan grafik histogram, kita dapat melihat bahwa
gambarnya belum berbentuk lonceng dan grafiknya cenderung mengarah kekanan yang menunjukkan bahwa data belum terdistribusi secara normal. Pada grafik P-P
Plot terlihat titik-titik menyebar jauh dari sekitar garis diagonal. Kedua grafik
tersebut menunjukkan bahwa model regresi menyalahi asumsi normalitas. b. Uji Statistik
Pengujian normalitas data dengan hanya melihat grafik dapat menyesatkan kalau tidak melihat secara seksama, sehingga kita perlu melakukan uji normalitas
data dengan menggunakan statistik agar lebih meyakinkan. Untuk memastikan apakah data di sepanjang garis diagonal berdistribusi normal, maka dilakukan uji
Kolmogorov-Smirnov 1 sample KS dengan melihat data residualnya apakah berdistribusi normal atau tidak. Jika nilai signifikansinya lebih besar dari 0,5 maka
Universitas Sumatera Utara
data tersebut terdistribusi normal. Jika nilai signifikansinya lebih kecil dari 0,5 maka distribusi data adalah tidak normal. Hasil uji Kolmogorov-Smirnov dapat
dilihat pada tabel 4.2
Tabel 4.2 Uji Normalitas
One-Sample Kolmogorov-Smirnov Test
Unstandardized Predicted Value
N 96
Normal Parametersa,b
Mean 45.5833333
Std. Deviation
.92262595 Most Extreme
Differences Absolute
.108 Positive
.108 Negative
-.098 Kolmogorov-Smirnov Z
1.062 Asymp. Sig. 2-tailed
.209 Sumber: Hasil Pengolahan Data dengan SPSS
Hasil uji Kolmogorov-Smirnov pada penelitian ini menujukkan probabilitas = 0.209. Dengan demikian, data pada penelitian ini tidak berdistribusi normal dan
dapat digunakan untuk melakukan uji hipotesis karena 0.209 0,5. Pada pengujian normalitas dengan analisis statistik dapat ketahui bahwa data
yang digunakan oleh penulis tidak berdistribusi normal sehingga data ini tidak dapat digunakan untuk melakukan uji hipotesis. Pada penelitian ini penulis
menggunakan metode transformasi data untuk menormalkan data penelitian. Menurut Gozali 2005:32, “data yang tidak terdistribusi secara normal dapat
ditransformasi agar menjadi normal”. Salah satu trasformasi data yang dapat dilakukan adalah dengan mentransformasikan data ke LG10 atau logaritma 10
atau LN. Hasil transformasi data dapat dilihat pada lampiran vii. Setelah
Universitas Sumatera Utara
dilakukan transformasi, penulis melakukan pengujian ulang terhadap uji normalitas untuk melihat kembali apakah data penelitian ini telah berdistribusi
normal atau tidak. Hasil pengujian normalitas setelah transformasi dapat dilihat sebagai berikut.
c. Analisis Grafik Setelah Transformasi Data Gambar 4.3