Materi Pembelajaran Fakta Metode Pembelajaran Media, Alat, dan Sumber Pembelajaran Langkah-langkah Kegiatan Pembelajaran

3. Siswa dapat menerapkan konsep matriks dalam memecahkan masalah nyata yang berkaitan dengan sistem persamaan linear. 4. Siswa dapat mengemukakan konsep matriks dalam transformasi geometri koordinat. 5. Siswa dapat menganalisis konsep matriks dalam transformasi geometri koordinat. 6. Siswa dapat menerapkan konsep matriks dalam memecahkan masalah nyata terkait transformasi geometri koordinat. 7. Siswa dapat merencanakan strategi yang efektif dalam mengaplikasikan konsep matriks dalam memecahkan masalah nyata terkait sistem persamaan linear. 8. Siswa dapat merencanakan strategi yang efektif dalam mengaplikasikan operasi sifat-sifat matriks dalam memecahkan masalah nyata terkait sistem persamaan linear. 9. Siswa dapat melaksanakan strategi yang efektif dalam mengaplikasikan konsep matriks dalam memecahkan masalah nyata terkait sistem persamaan linear. 10.Siswa dapat melaksanakan strategi yang efektif dalam mengaplikasikan operasi sifat-sifat matriks dalam memecahkan masalah nyata terkait sistem persamaan linear. 11.Siswa dapat merencanakan strategi yang efektif dalam mengaplikasikan konsep matriks dalam memecahkan masalah nyata terkait transformasi geometri koordinat. 12.Siswa dapat melaksanakan strategi yang efektif dalam mengaplikasikan konsep matriks dalam memecahkan masalah nyata terkait transformasi geometri koordinat. 13.Siswa dapat merencanakan strategi yang efektif dalam mengaplikasikan operasi sifat-sifat matriks dalam memecahkan masalah nyata terkait transformasi geometri koordinat. 14.Siswa dapat melaksanakan strategi yang efektif dalam mengaplikasikan operasi sifat-sifat matriks dalam memecahkan masalah nyata terkait transformasi geometri koordinat.

D. Materi Pembelajaran Fakta

1. Masalah kontekstual yang diselesaikan dengan metode invers matriks. 2. Masalah kontekstual yang berkaitan dengan soal aplikasi penerapan matriks atau soal-soal seleksi masuk perguruan tinggi. Konsep 1. Invers Matriks 2. Matriks Transformasi 3. Matriks Translasi 4. Matriks Refleksi 5. Matriks Rotasi 6. Matriks Dilatasi Prinsip 1. Definisi invers matriks. 2. Sifat invers matriks. 3. Rumus Cramer untuk SPLDV dan SPLTV. 4. Aturan operasi baris elementer. Prosedur 1. Langkah-langkah penyelesaian SPLDV menggunakan metode invers matriks. 2. Langkah-langkah penyelesaian SPLTV menggunakan metode Cramer.

E. Metode Pembelajaran

1. Pendekatan : saintifik 2. Model Pembelajaran : pembelajaran berbasis masalah, discovery learning 3. Metode : ceramah, diskusi kelompok, diskusi kelas, tanya jawab, dan penugasan

F. Media, Alat, dan Sumber Pembelajaran

1. Media Pembelajaran : website dan grafik 2. Alat dan Bahan : alat tulis, kertas, kertas grafik, mistar, dan jangka 3. Sumber Belajar a. Buku Matematika Kelas XII Peminatan karya Marthen Kanginan terbitan Yrama Widya halaman 1-58. b. Buku-buku lain yang relevan, informasi melalui media cetak, dan internet.

G. Langkah-langkah Kegiatan Pembelajaran

Pertemuan Kesatu Rincian Kegiatan Alokasi Waktu PendahuluanKegiatan Awal  Siswa menjawab sapaan guru, berdoa, dan mengondisikan diri siap belajar  Guru memberi apersepsi dengan menginformasikan sensor dan komponen komputer yang berada di pesawat menggunakan sistem aplikasi matriks  Guru menyampaikan tujuan pembelajaran  Guru menyampaikan pokok-pokokcakupan materi pembelajaran 15 menit Kegiatan Inti Mengamati 60 menit  Siswa mengamati langkah-langkah penyelesaian SPLDV dengan menggunakan metode invers matriks.  Siswa mengamati langkah-langkah penyelesaian SPLDV dengan menggunakan metode Cramer.  Siswa mengamati dan memahami langkah-langkah menentukan determinan matriks berordo 3 × 3 dengan cara umum.  Siswa mengamati dan memahami langkah-langkah menentukan determinan matriks berordo 3 × 3 dengan cara Sarrus.  Guru mengajak siswa mengamati penjelasan aturan Cramer dalam determinan matriks yang lebih menarik pada website.  Siswa mengamati langkah-langkah menyelesaikan SPLTV dengan menggunakan metode Cramer. Menanya  Siswa melakukan tanya jawab bersama teman sebangku dan guru mengenai penyelesaian SPLDV dengan menggunakan metode invers matriks.  Siswa melakukan tanya jawab bersama teman sebangku dan guru mengenai penyelesaian SPLDV dengan menggunakan metode Cramer.  Siswa melakukan tanya jawab bersama teman sebangku dan guru mengenai menyelesaikan SPLTV dengan menggunakan metode Cramer. Mengeksplorasi  Siswa mengerjakan Kegiatan 1.1 dan Latihan 1.1 mengenai penyelesaian SPLDV dengan menggunakan metode invers matriks.  Siswa mengerjakan Kegiatan 1.2 mengenai syarat SPLDV yang memiliki penyelesaian.  Siswa mengerjakan Latihan 1.2 mengenai penyelesaian SPLDV dengan menggunakan metode Cramer.  Siswa mengerjakan Latihan 1.3 mengenai cara menentukan determinan matriks berordo 3 × 3 dengan cara umum.  Siswa mengerjakan Latihan 1.4 mengenai cara menentukan determinan matriks berordo 3 × 3 dengan cara Sarrus.  Siswa mengerjakan Kegiatan 1.3 mengenai perbandingan cara menentukan determinan matriks berordo 3 × 3 dengan cara umum dan cara Sarrus yang lebih efisien.  Siswa mengerjakan Latihan 1.5 mengenai penyelesaian SPLTV dengan menggunakan metode Cramer.  Siswa mengerjakan Kegiatan 1.4 mengenai penyelesaian SPL empat variabel dengan menggunakan metode Cramer.  Guru membimbing dan menilai kemampuan siswa dalam melakukan aktivitas. Mengasosiasi  Siswa diminta untuk mendiskusikan kesimpulan dari Kegiatan 1.1 yang telah diperoleh.  Siswa diminta untuk mendiskusikan kesimpulan dari Kegiatan 1.2 yang telah diperoleh.  Siswa diminta untuk mendiskusikan kesimpulan dari Kegiatan 1.3 yang telah diperoleh.  Siswa diminta untuk mendiskusikan kesimpulan dari Kegiatan 1.4 yang telah diperoleh.  Siswa diminta menyimpulkan hasil dari Kegiatan 1.1, Latihan 1.1, Kegiatan 1.2, Latihan 1.2, Latihan 1.3, Latihan 1.4, Kegiatan 1.3, Latihan 1.5, dan Kegiatan 1.4.  Guru membimbing dan menilai kemampuan siswa dalam merumuskan kesimpulan. Mengomunikasikan  Perwakilan beberapa siswa mempresentasikan dan menjelaskan kesimpulan mengenai penyelesaian SPLDV dengan menggunakan metode invers matriks di depan kelas.  Perwakilan beberapa siswa mempresentasikan dan menjelaskan kesimpulan mengenai penyelesaian SPLDV dengan menggunakan metode Cramer di depan kelas.  Perwakilan beberapa siswa mempresentasikan dan menjelaskan kesimpulan mengenai perbandingan cara menentukan determinan matriks berordo 3 × 3 dengan cara umum dan cara Sarrus yang lebih efisien di depan kelas.  Perwakilan beberapa siswa mempresentasikan dan menjelaskan kesimpulan mengenai penyelesaian SPL empat variabel dengan menggunakan metode Cramer di depan kelas.  Guru memberi penguatan terhadap kesimpulan yang disampaikan siswa.  Guru menilai kemampuan siswa berkomunikasi lisan. Penutup  Siswa bersama guru menyimpulkan materi pembelajaran yang telah dipelajari.  Siswa merefleksi penguasaan materi yang telah dipelajari.  Siswa melakukan evaluasi pembelajaran.  Siswa saling memberikan umpan balik hasil dari evaluasi pembelajaran yang telah dicapai.  Siswa mendengarkan arahan guru untuk materi pada pertemuan selanjutnya. 15 menit Pertemuan Kedua Rincian Kegiatan Alokasi Waktu PendahuluanKegiatan Awal  Siswa menjawab sapaan guru, berdoa, dan mengondisikan diri siap belajar  Guru bertanya mengenai materi yang telah disampaikan pada pertemuan sebelumnya  Guru memberi apersepsi dengan memperlihatkan operasi baris elementer OBE  Guru menyampaikan tujuan pembelajaran  Guru menyampaikan pokok-pokokcakupan materi pembelajaran 15 menit Kegiatan Inti Mengamati  Siswa mengamati dan memahami aturan operasi baris elementer pada matriks.  Siswa mengamati langkah-langkah penyelesaian SPLDV dengan menggunakan metode Gauss. 60 menit  Siswa mengamati langkah-langkah penyelesaian SPLDV dengan menggunakan metode Gauss-Jordan.  Siswa mengamati langkah-langkah penyelesaian SPLTV dengan menggunakan metode Gauss-Jordan.  Siswa mengamati pemecahan masalah nyata yang berkaitan dengan SPL.  Siswa mengamati soal dan pembahasan pada Ayo Kerjakan Soal Seleksi. Menanya  Siswa melakukan tanya jawab bersama teman sebangku dan guru mengenai aturan operasi baris elementer pada matriks.  Siswa melakukan tanya jawab bersama teman sebangku dan guru mengenai langkah-langkah penyelesaian SPLDV dengan menggunakan metode Gauss.  Siswa melakukan tanya jawab bersama teman sebangku dan guru mengenai langkah-langkah penyelesaian SPLDV dengan menggunakan metode Gauss- Jordan.  Siswa melakukan tanya jawab bersama teman sebangku dan guru mengenai langkah-langkah penyelesaian SPLTV dengan menggunakan metode Gauss- Jordan.  Siswa melakukan tanya jawab bersama teman sebangku dan guru mengenai pemecahan masalah nyata yang berkaitan dengan SPL.  Siswa melakukan tanya jawab bersama teman sebangku dan guru mengenai soal dan pembahasan pada Ayo Kerjakan Soal Seleksi. Mengeksplorasi  Siswa mengerjakan Kegiatan 1.5 mengenai cara menemukan aturan operasi baris elementer OBE.  Siswa mengerjakan Latihan 1.6 mengenai penyelesaian SPLDV dengan menggunakan metode Gauss dan metode Gauss-Jordan.  Siswa mengerjakan Latihan 1.7 mengenai penyelesaian SPLTV dengan menggunakan metode Gauss-Jordan.  Siswa mengerjakan Kegiatan 1.6 mengenai perbandingan antara metode eliminasi-substitusi, metode Cramer, dan metode Gauss-Jordan dalam penyelesaian SPLTV.  Siswa mengerjakan Latihan 1.8 mengenai pemecahan masalah nyata yang berkaitan dengan SPLDV yang diselesaikan dengan menggunakan metode invers matriks.  Guru membimbing dan menilai kemampuan siswa dalam melakukan aktivitas Mengasosiasi  Siswa dibagi menjadi berkelompok kemudian mendiskusikan hasil dari Kegiatan 1.5 dan Kegiatan 1.6.  Guru membimbing dan menilai kemampuan siswa dalam merumuskan kesimpulan. Mengomunikasikan  Perwakilan masing-masing kelompok mempresentasikan hasil diskusi kelompoknya mengenai kesimpulan dari Kegiatan 1.5 dan Kegiatan 1.6.  Guru memberi penguatan terhadap kesimpulan yang disampaikan siswa.  Guru menilai kemampuan siswa berkomunikasi lisan. Penutup  Siswa bersama guru menyimpulkan materi pembelajaran yang telah dipelajari.  Siswa mereview penguasaan materi yang telah dipelajari dengan mengerjakan Review Konsep Subbab A dan Latihan Subbab A.  Siswa saling memberikan umpan balik hasil dari evaluasi pembelajaran yang telah dicapai.  Siswa mendengarkan arahan untuk materi pada pertemuan selanjutnya. 15 menit Pertemuan Ketiga Rincian Kegiatan Alokasi Waktu PendahuluanKegiatan Awal  Siswa menjawab sapaan guru, berdoa, dan mengondisikan diri siap belajar.  Guru bertanya mengenai materi yang telah disampaikan pada pertemuan sebelumnya.  Guru mengajukan pertanyaan yang berhubungan dengan transformasi.  Guru menyampaikan tujuan pembelajaran.  Guru menyampaikan pokok-pokokcakupan materi pembelajaran. 15 menit Kegiatan Inti Mengamati  Siswa mengamati cara menentukan matriks transformasi dalam sistem persamaan linear.  Siswa mengamati konsep translasi.  Siswa mengamati langkah-langkah menggambar dan menentukan koordinat titik bayangan hasil translasi.  Siswa mengamati konsep refleksi.  Siswa mengamati langkah-langkah menentukan koordinat bayangan oleh refleksi menggunakan matriks transformasi refleksi. Menanya  Siswa berdiskusi dan tanya jawab bersama teman sebangku dan guru mengenai matriks transformasi dalam sistem persamaan linear.  Siswa berdiskusi dan tanya jawab bersama teman sebangku dan guru mengenai langkah-langkah menggambar dan menentukan koordinat titik bayangan hasil translasi.  Siswa berdiskusi dan tanya jawab bersama teman sebangku dan guru mengenai langka-langkah menentukan koordinat bayangan oleh refleksi menggunakan matriks transformasi refleksi. Mengeksplorasi  Siswa mengerjakan Latihan 1.9 mengenai langkah-langkah menentukan matriks transformasi jika koordinat benda dan bayangan diketahui.  Siswa mengerjakan Kegiatan 1.7 mengenai langkah-langkah menentukan hubungan antara koordinat titik, koordinat titik bayangan dan matriks translasi.  Siswa mengerjakan Latihan 1.10 mengenai langkah-langkah menggambar koordinat titik bayangan hasil translasi. 60 menit  Siswa mengerjakan Kegiatan 1.8 mengenai langkah-langkah menemukan rumus refleksi terhadap sumbu-X, sumbu-Y, garis y = x, dan garis y = –x.  Siswa mengerjakan Kegiatan 1.9 mengenai langkah-langkah menemukan matriks transformasi refleksi.  Siswa mengerjakan Latihan 1.11 mengenai langkah-langkah menentukan koordinat koordinat bayangan oleh refleksi menggunakan matriks transformasi refleksi.  Guru membimbing dan menilai kemampuan siswa dalam melakukan aktivitas Mengasosiasi  Siswa diminta untuk mendiskusikan kesimpulan dari Kegiatan 1.7 yang telah diperoleh.  Siswa diminta untuk mendiskusikan kesimpulan dari Kegiatan 1.8 yang telah diperoleh.  Siswa diminta untuk mendiskusikan kesimpulan dari Kegiatan 1.9 yang telah diperoleh.  Siswa diminta menyimpulkan hasil dari Latihan 1.9, Kegiatan 1.7, Latihan 1.10, Kegiatan 1.8, Kegiatan 1.9, dan Latihan 1.11.  Guru membimbing dan menilai kemampuan siswa dalam merumuskan kesimpulan Mengomunikasikan  Perwakilan beberapa siswa mempresentasikan dan menjelaskan kesimpulan mengenai langkah-langkah menentukan hubungan antara koordinat titik, koordinat titik bayangan dan matriks translasi.  Perwakilan beberapa siswa mempresentasikan dan menjelaskan kesimpulan mengenai langkah-langkah menemukan rumus refleksi terhadap sumbu-X, sumbu- Y, garis y = x, dan garis y = –x.  Perwakilan beberapa siswa mempresentasikan dan menjelaskan kesimpulan mengenai langkah-langkah menemukan matriks transformasi refleksi.  Guru memberi penguatan terhadap kesimpulan yang disampaikan siswa  Guru menilai kemampuann siswa berkomunikasi lisan Penutup  Siswa bersama guru menyimpulkan materi pembelajaran yang telah dipelajari.  Siswa merefleksi penguasaan materi yang telah dipelajari.  Siswa melakukan evaluasi pembelajaran.  Siswa saling memberikan umpan balik hasil dari evaluasi pembelajaran yang telah dicapai.  Siswa mendengarkan arahan guru untuk materi pada pertemuan selanjutnya. 15 menit Pertemuan Keempat Rincian Kegiatan Alokasi Waktu PendahuluanKegiatan Awal  Siswa menjawab sapaan guru, berdoa, dan mengondisikan diri siap belajar.  Guru bertanya mengenai materi yang telah disampaikan pada pertemuan 15 menit sebelumnya.  Guru memberi apersepsi dengan menanyakan aplikasi rotasi yang diketahui siswa dalam kehidupan sehari-hari.  Guru menyampaikan tujuan pembelajaran.  Guru menyampaikan pokok-pokokcakupan materi pembelajaran. Kegiatan Inti Mengamati  Siswa mengamati konsep matriks transformasi rotasi.  Siswa mengamati langkah-langkah menentukan koordinat bayangan suatu titik oleh rotasi dengan pusat Pa, b.  Siswa mengamati konsep matriks transformasi dilatasi.  Siswa memahami langkah-langkah menggambar bayangan hasil dilatasi.  Siswa mengamati langkah-langkah menentukan koordinat bayangan dilatasi dengan pusat Pa, b.  Siswa memahami konsep luas bayangan hasil dilatasi.  Siswa mengamati langkah-langkah menentukan luas bayangan hasil transformasi dilatasi. Menanya  Siswa melakukan tanya jawab bersama teman sebangku dan guru mengenai langkah-langkah menentukan koordinat bayangan suatu titik oleh rotasi dengan pusat Pa, b.  Siswa melakukan tanya jawab bersama teman sebangku dan guru mengenai langkah-langkah menggambar bayangan hasil dilatasi.  Siswa melakukan tanya jawab bersama teman sebangku dan guru mengenai langkah-langkah menentukan koordinat bayangan dilatasi dengan pusat Pa, b.  Siswa melakukan tanya jawab bersama teman sebangku dan guru mengenai langkah-langkah menentukan luas bayangan hasil transformasi dilatasi. Mengeksplorasi  Siswa diminta mengerjakan Latihan 1.12 mengenai matriks transformasi rotasi.  Siswa diminta mengerjakan Kegiatan 1.10 mengenai langkah-langkah menemukan rumus A n , dengan n bilangan asli dan A = M R[O, θ] .  Siswa diminta mengerjakan Latihan 1.13 mengenai langkah-langkah menentukan koordinat bayangan suatu titik oleh rotasi dengan pusat Pa, b.  Siswa diminta mengerjakan Kegiatan 1.11 mengenai langkah-langkah menemukan konsep dilatasi.  Siswa diminta mengerjakan Kegiatan 1.12 mengenai langkah-langkah menemukan rumus aturan dilatasi dengan pusat O dan faktor skala k.  Siswa diminta mengerjakan Latihan 1.14 mengenai matriks transformasi dilatasi.  Siswa diminta mengerjakan Latihan 1.15 mengenai langkah-langkah menentukan koordinat bayangan dilatasi dengan pusat Pa, b.  Siswa diminta mengerjakan Kegiatan 1.13 dan Latihan 1.16 mengenai langkah- langkah menentukan luas bayangan hasil transformasi dilatasi.  Guru membimbing dan menilai kemampuan siswa dalam melakukan aktivitas Mengasosiasi  Siswa diminta untuk mendiskusikan kesimpulan dari Kegiatan 1.10 yang telah 60 menit diperoleh.  Siswa diminta untuk mendiskusikan kesimpulan dari Kegiatan 1.11 yang telah diperoleh.  Siswa diminta untuk mendiskusikan kesimpulan dari Kegiatan 1.12 yang telah diperoleh.  Siswa diminta untuk mendiskusikan kesimpulan dari Kegiatan 1.13 yang telah diperoleh.  Guru membimbing dan menilai kemampuan siswa dalam merumuskan kesimpulan Mengomunikasikan  Perwakilan beberapa siswa mempresentasikan dan menjelaskan kesimpulan mengenai penentuan rumus A n , dengan n bilangan asli dan A = M R[O, θ] di depan kelas.  Perwakilan beberapa siswa mempresentasikan dan menjelaskan kesimpulan mengenai konsep dilatasi di depan kelas.  Perwakilan beberapa siswa mempresentasikan dan menjelaskan kesimpulan mengenai rumus aturan dilatasi dengan pusat O dan faktor skala k di depan kelas.  Perwakilan beberapa siswa mempresentasikan dan menjelaskan kesimpulan mengenai rumus luas bayangan hasil transformasi dilatasi.  Guru memberi penguatan terhadap kesimpulan yang disampaikan siswa.  Guru menilai kemampuan siswa berkomunikasi lisan. Penutup  Siswa bersama guru menyimpulkan materi pembelajaran yang telah dipelajari.  Siswa merefleksi penguasaan materi yang telah dipelajari.  Siswa melakukan evaluasi pembelajaran.  Siswa saling memberikan umpan balik hasil dari evaluasi pembelajaran yang telah dicapai.  Siswa mendengarkan arahan guru untuk materi pada pertemuan selanjutnya. 15 menit Pertemuan Kelima Rincian Kegiatan Alokasi Waktu PendahuluanKegiatan Awal  Siswa menjawab sapaan guru, berdoa, dan mengondisikan diri siap belajar.  Guru bertanya mengenai materi yang telah disampaikan pada pertemuan sebelumnya.  Guru memberi apersepsi dengan mengajukan pertanyaan yang berkaitan dengan bayangan kurva oleh suatu transformasi.  Guru menyampaikan tujuan pembelajaran.  Guru menyampaikan pokok-pokokcakupan materi pembelajaran. 15 menit Kegiatan Inti Mengamati  Siswa mengamati konsep luas bayangan hasil transformasi.  Siswa mengamati konsep bayangan kurva oleh suatu transformasi. 60 menit  Siswa mengamati soal dan pembahasan pada pojok Ayo Kerjakan Soal Seleksi. Menanya  Siswa melakukan tanya jawab bersama teman sebangku dan guru mengenai konsep luas bayangan hasil transformasi.  Siswa melakukan tanya jawab bersama teman sebangku dan guru mengenai konsep bayangan kurva oleh suatu transformasi.  Siswa melakukan tanya jawab bersama teman sebangku dan guru mengenai soal dan pembahasan pada pojok Ayo Kerjakan Soal Seleksi. Mengeksplorasi  Siswa diminta mengerjakan Kegiatan 1.14 dan Latihan 1.17 mengenai langkah- langkah menentukan luas bayangan hasil transformasi.  Siswa diminta mengerjakan Latihan 1.18 mengenai langkah-langkah menentukan bayangan kurva oleh suatu transformasi.  Guru membimbing dan menilai kemampuan siswa dalam melakukan aktivitas Mengasosiasi  Siswa dibagi menjadi berkelompok kemudian mendiskusikan hasil dari Kegiatan 1.14.  Guru membimbing dan menilai kemampuan siswa dalam merumuskan kesimpulan Mengomunikasikan  Perwakilan masing-masing kelompok mempresentasikan hasil diskusi kelompoknya mengenai kesimpulan dari Kegiatan 1.14.  Guru memberi penguatan terhadap kesimpulan yang disampaikan siswa  Guru menilai kemampuan siswa berkomunikasi lisan Penutup  Siswa bersama guru menyimpulkan materi pembelajaran yang telah dipelajari  Siswa mereview penguasaan materi yang telah dipelajari dengan mengerjakan Review Konsep Subbab B dan Latihan Subbab B  Siswa saling memberikan umpan balik hasil dari evaluasi pembelajaran yang telah dicapai  Siswa mendengarkan arahan guru untuk materi pada pertemuan berikutnya 15 menit Pertemuan Keenam Rincian Kegiatan Alokasi Waktu PendahuluanKegiatan Awal  Siswa menjawab sapaan guru, berdoa, dan mengondisikan diri siap belajar.  Guru menanyakan kesiapan siswa untuk melaksanakan tes ulangan harian tentang penerapan matriks.  Guru menugaskan siswa untuk menyiapkan kertas dua lembar, diisi dengan nama, kelas, dan tanggal.  Guru membagikan soal kepada siswa.  Guru mempersilakan siswa untuk mengerjakan tes tersebut dalam waktu 60 menit. 15 menit Kegiatan Inti 60 menit  Siswa melaksanakan tes selama 60 menit. Penutup  Siswa mengumpulkan hasil tes.  Guru bersama siswa membahas sebagian dari soal yang sudah diteskan.  Guru memberikan tugas kepada siswa untuk membuat portofolio mengenai rangkuman dari kegiatan-kegiatan yang telah siswa kerjakan, artikel mengenai sejarah perkembangan konsep penerapan matriks, serta kesimpulan dari artikel tersebut. 15 menit

H. Penilaian 1.