Paper-12-Acta24.2010. 131KB Jun 04 2011 12:03:10 AM
Acta Universitatis Apulensis
ISSN: 1582-5329
No. 24/2010
pp. 119-129
SHARP WEIGHTED INEQUALITIES FOR VECTOR-VALUED
MULTILINEAR COMMUTATORS OF MARCINKIEWICZ
OPERATOR
FENG Qiufen
Abstract. In this paper, we prove the sharp inequality for the vector-valued
multilinear commutators related to the Marcinkiewicz operator. By using the sharp
inequality, we obtain the weighted Lp -norm inequality for the vector-valued multilinear commutators.
2000 Mathematics Subject Classification: 42B20, 42B25.
1. Introduction
Let T be the Calder´on-Zygmund singular integral operator, we know that the
commutator [b, T ](f ) = T (bf )−bT (f ) (where b ∈ BM O(Rn )) is bounded on Lp (Rn )
for 1 < p < ∞ (see [3]). In [9], the sharp estimates for some multilinear commutators
of the Calder´on-Zygmund singular integral operators are obtained. The main purpose of this paper is to prove a sharp inequality for some vector-valued multilinear
commutators related to the Marcinkiewicz operator. By using the sharp inequality, we obtain the weighted Lp -norm inequality for the vector-valued multilinear
commutators.
2. Notations and Results
First let us introduce some notations(see [4][9][10]). In this paper, Q will
R denote
n
−1
a cube of R with sides parallel to the axes, and for a cue Q let fQ = |Q|
Q f (z)dz
and the sharp function of f is defined by
Z
1
f # (x) = sup
|f (y) − fQ |dy.
Q∋x |Q| Q
It is well-known that(see [4])
119
F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
1
f (x) = sup inf
c∈C
|Q|
Q∋x
#
Z
|f (y) − c|dy.
Q
We say that b belongs to BM O(Rn ) if b# belongs to L∞ (Rn ) and define ||b||BM O =
−
→
||b# ||L∞ . If b = (b1 , · · · , bm ), bj ∈ BM O for (j = 1, · · · , m), then
||~b||BM O =
m
Y
||bj ||BM O .
j=1
Let M be the Hardy-Littlewood maximal operator, that is that
Z
−1
|f (y)|dy;
M (f )(x) = sup |Q|
x∈Q
Q
we write that Mp (f ) = (M (|f |p ))1/p for 0 < p < ∞.
Given a positive integer m and 1 ≤ j ≤ m, we denote by Cjm the family of all
finite subsets σ = {σ(1), · · ·, σ(j)} of {1, · · ·, m} of j different elements. For σ ∈ Cjm ,
set σ c = {1, · · ·, m} \ σ. For ~b = (b1 , · · ·, bm ) and σ = {σ(1), · · ·, σ(j)} ∈ Cjm , set
~bσ = (bσ(1) , · · ·, bσ(j) ), bσ = bσ(1) · · · bσ(j) and ||~bσ ||BM O = ||bσ(1) ||BM O · · · ||bσ(j) ||BM O .
We denote the Muckenhoupt weights by Ap , let Ω ∈ Ap and 1 ≤ p < ∞, ω satisfy
the inverse H¨
older inequality, there exists a constant C and 1 < q < ∞, for any cube
Q, we get(see [10])
1
|Q|
1/q
Z
C
ω(x) dx
ω(x)dx.
≤
|Q| Q
Q
Z
q
In this paper, we will study some vector-valued multilinear commutators as following.
Definition.
Let 0 < γ ≤ 1 and Ω be homogeneous of degree zero on Rn such
R
that S n−1 Ω(x′ )dσ(x′ ) = 0. Assume that Ω ∈ Lipγ (S n−1 ), that is there exists a
constant M > 0 such that for any x, y ∈ S n−1 , |Ω(x) − Ω(y)| ≤ M |x − y|γ . Set
bj (j = 1, · · · , m) as a fixed locally integrable function of Rn , then when 1 < r < ∞,
The vector-valued Marcinkiewicz multilinear commutators is defined by
∞
X
~
~
|µbΩ (f )(x)| = ( (µbΩ (fi )(x))r )1/r ,
i=1
where
~
µbΩ (f )(x)
=
Z
0
∞
dt
~
|Ftb (f )(x)|2 3
t
120
1/2
F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
and
~
Ftb (f )(x) =
Set
Z
|x−y|≤t
Ω(x − y)
|x − y|n−1
Ft (f )(x) =
m
Y
j=1
Z
|x−y|≤t
(bj (x) − bj (y)) f (y)dy.
Ω(x − y)
f (y)dy,
|x − y|n−1
we also define that
µΩ (f )(x) =
Z
∞
0
dt
|Ft (f )(x)|2 3
t
1/2
,
which is the Marcinkiewicz operator(see
[11]).
n
o
1/2
R∞
Let H be the space H = h : ||h|| = 0 |h(t)|2 dt/t3
< ∞ . Then, it is clear
that
˜
˜
µΩ (f )(x) = ||Ft (f )(x)|| and µbΩ (f )(x) = ||Ftb (f )(x)||.
~
Note that when b1 = · · · = bm , |µbΩ (f )(x)| is just the m order vector-valued
Marcinkiewicz operator multilinear commutators. It is well known that commutators
are of great interest in harmonic analysis and have been widely studied by many
authors (see [1][4-8][10]). Our main purpose is to establish the sharp inequality for
the vector-valued Marcinkiewicz operator multilinear commutators.
Now we state our main results as following.
3. Main Theorem and proof
First, we will establish the following theorem.
Theorem 1. Let 1 < r < ∞, bj ∈ BM O(Rn ) for j = 1, · · · , m. Then for any
1 < s < ∞, there exists a constant C > 0 such that for any f ∈ C0∞ (Rn ) and any
x
e ∈ Rn ,
m X
X
~ c
~
x) +
||~bσ ||BM O Ms (|µbΩσ (f )|r )(e
x) .
(|µbΩ (f )|r )# (e
x) ≤ C ||~b||BM O Ms (|f |r )(e
j=1 σ∈Cjm
~
Theorem 2. Let 1 < r < ∞, bj ∈ BM O(Rn ) for j = 1, · · · , m. Then |µbΩ |r is
bounded on Lp (Rn ) for 1 < p < ∞.
To proof the theorem,we need the following lemmas.
121
F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
Lemma 1. (see [11]) Let w ∈ Ap and 1 < r < ∞, 1 < p < ∞. When
Ω ∈ Lipr (S n−1 ) for 0 < γ ≤ 1, then |µΩ |r is bounded on Lp (w).
Lemma 2. Let 1 < r < ∞, bj ∈ BM O for j = 1, · · · , k and k ∈ N . Then, we
have
Z Y
k
k
Y
1
|bj (y) − (bj )Q |dy ≤ C
||bj ||BM O
|Q| Q
j=1
and
1
|Q|
Z Y
k
Q j=1
j=1
1/r
|bj (y) − (bj )Q |r dy
≤C
k
Y
||bj ||BM O .
j=1
Proof. For σ ∈ Ckm , where k ≤ m and m ∈ N, we have
Z
1
|(b(y) − (bj )Q )σ |dy ≤ C||bσ ||BM O
|Q| Q
and
1
|Q|
Z
r
|(b(y) − (bj )Q )σ | dy
Q
1/r
≤ C||bσ ||BM O .
We just need to choose pj > 1 and qj > 1 , where 1 ≤ j ≤ k, such that 1/p1 + · · · +
1/pk = 1 and 1/q1 + · · · + 1/qk = 1/r. After that,using the H¨
older’s inequality with
exponent 1/p1 + · · · + 1/pk = 1 and 1/q1 + · · · + 1/qk = 1/r respectively, we may
get the conclusions.
Lemma
0 < γ ≤ 1 and Ω be homogeneous of degree zero on Rn
R 3.(see ′[11]) Let
such that S n−1 Ω(x )dσ(x′ ) = 0. Assume that Ω ∈ Lipγ (S n−1 ), if Q = Q(x0 , d), y ∈
(2Q)c , then
Ω(x − y)
Ω(x0 − y)
|x − x0 |γ
|x − x0 |
|x − y|n−1 − |x0 − y|n−1 ≤ C |x0 − y|n + |x0 − y|n−1+γ .
Proof of Theorem 1. It suffices to prove for f ∈ C0∞ (Rn ) and some constant C0 ,
the following inequality holds:
Z
m X
X
1
~
~
x) +
Ms (|µbΩ (f )|r )(e
x) .
||µb (f )(x)|r − C0 |dx ≤ C Ms (|f |r )(e
|Q| Q Ω
m
j=1 σ∈Cj
122
F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
Fix a cube Q = Q(x0 , d) and x
˜ ∈ Q. We write, f = g + h = gi +R hi , where
gi = fi χ2Q and hi = fi χ(2Q)c . If let ˜b = (b1 , ..., bm ), where (bj )Q = |Q|−1 Q bj (y)dy,
for 1 ≤ j ≤ m. We have
Z
m
Y
˜
(bj (x) − bj (y)) fi (y) Ω(x − y) dy
Ftb (fi )(x) =
|x − y|n−1
|x−y|≤t j=1
Z
m
Y
((bj (x) − (bj )2Q ) − (bj (y) − (bj )2Q )) fi (y) Ω(x − y) dy
=
|x − y|n−1
|x−y|≤t
j=1
=
m X
X
m−j
(−1)
j=0 σ∈Cjm
(b(x) − (b)2Q )σ
Z
(b(y) − (b)2Q )σc fi (y)
|x−y|≤t
= (b1 (x) − (b1 )2Q ) · · · (bm (x) − (bm )2Q )Ft (fi )(x)
+(−1)m Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q )fi )(x)
+
m−1
X
X
˜
(−1)m−j (b(x) − (b)2Q )σ Ftbσ (fi )(x),
j=1 σ∈Cjm
123
c
Ω(x − y)
dy
|x − y|n−1
F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
Then by Minkowski’s inequality, we get
Z
1
~
||µbΩ (f )(x)|r − |µΩ ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q ))h)(x0 )|r |dx
|Q| Q
Z
1
~
|||Ftb (f )(x)||r − ||Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q ))h)(x0 )||r |dx
≤
|Q| Q
1/r
Z X
∞
1
~b
r
≤
||Ft (fi )(x) − Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q )hi )(x0 )||
dx
|Q| Q
i=1
1/r
Z X
∞
1
r
≤
||(b1 (x) − (b1 )2Q ) · · · (bm (x) − (bm )2Q )Ft (fi )(x)||
dx
|Q| Q
i=1
1/r
Z X
∞ m−1
X X
˜bσc
1
r
dx
||(b(x) − (b)2Q )σ Ft (fi )(x)||
+
|Q| Q
m
i=1 j=1 σ∈Cj
1/r
Z X
∞
1
r
||Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q )gi )(x)||
+
|Q| Q
i=1
Z X
∞
1
||Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q )hi )(x)
+
|Q| Q
i=1
1/r
r
dx
−Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q )hi )(x0 )||
= I1 + I2 + I3 + I4 .
For I1 , by H¨
older’s inequality with exponent 1/s′ + 1/s = 1 and lemma 2, we get
I1
1
≤ C
|Q|
Z
|
m
Y
(bj (x) − (bj )2Q )||µΩ (f )(x)|r dx
Q j=1
1
≤ C
|2Q|
Z
|
m
Y
2Q j=1
s′
1/s′
(bj (x) − (bj )2Q )| dx
≤ C||~b||BM O Ms (|µΩ (f )|r )(˜
x).
124
1
|Q|
Z
Q
|µΩ (f )(x)|sr dx
1/s
F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
For I2 , by H¨
older’s inequality with exponent 1/s′ + 1/s = 1, we have
I2 =
≤
1
|Q|
Z m−1
X X
m−1
X
Q j=1 σ∈C m
j
X
j=1 σ∈Cjm
≤ C
Z
1
|Q|
Q
~
c
~
c
||(b(x) − (b)2Q )σ Ftbσ (f )(x)||r dx
|(b(x) − (b)2Q )σ ||µbΩσ (f )(x)|r dx
m−1
X
1/s′
1/s
Z
X 1 Z
~bσc
1
s
s′
|(b(x) − (b)2Q )σ | dx
|µ (f )(x)|r dx
|2Q| 2Q
|Q| Q Ω
m
m−1
X
X
j=1 σ∈Cj
≤ C
~ c
x).
||~bσ ||BM O Ms (|µbΩσ (f )|r )(˜
j=1 σ∈Cjm
For I3 , we choose
p
L (Rn )(see lemma 1)
I3
some p, such that 1 < p < s, by the boundness of |µΩ |r on
and H¨
older’s inequality, we gain
Z
m
Y
1
=
||Ft ( (bj (y) − (bj )2Q )g)(x)||r dx
|Q| Q
j=1
1/p
Z
m
Y
1
≤
|µΩ ( (bj (y) − (bj )2Q )f χ2Q )(x)|pr dx
|Q| Rn
j=1
≤ C
1
|Q|
Z
1
≤ C
|2Q|
|
m
Y
Rn j=1
Z
|
1/p
(bj (y) − (bj )2Q )|p |f χ2Q |pr dx
m
Y
sp/(s−p)
(bj (y) − (bj )2Q )|
2Q j=1
≤ C||~b||BM O Ms (|f |r )(˜
x).
125
(s−p)/sp
dx
1
|2Q|
Z
2Q
1/s
|f (x)|sr dx
F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
For I4 , we have
||Ft (
=
−
m
Y
(bj − (bj )2Q )h)(x) − Ft (
j=1
Z
∞
0
|
m
Y
(bj − (bj )2Q )h)(x0 )||r
j=1
Z
Z
|x−y|≤t
|x0 −y|≤t
m
Ω(x − y)|h(y)|r Y
(bj (y) − (bj )2Q ) dy
|x − y|n−1
j=1
Ω(x0 − y)|h(y)|r
|x0 − y|n−1
m
Y
j=1
1/2
dt
(bj (y) − (bj )2Q ) dy|2 3
t
2 1/2
Y
m
|Ω(x − y)||h(y)|r
dy dt
(b
(y)
−
(b
)
)
j
j
2Q
n−1
|x − y|
t3
|x0 −y|≤t,|x0 −y|>t
0
j=1
2 1/2
Y
Z ∞ Z
m
|Ω(x0 − y)||h(y)|r
dy dt
+
(b
(y)
−
(b
)
)
j
j
2Q
n−1
|x0 − y|
t3
0
|x−y|>t,|x0 −y|≤t
j=1
Z ∞ "Z
|Ω(x − y)| |Ω(x0 − y)|
−
+
n−1
|x0 − y|n−1
|x−y|≤t,|x0 −y|≤t |x − y|
0
2 1/2
Y
m
dt
× (bj (y) − (bj )2Q ) |h(y)|r dy 3
t
Z ∞ Z
≤
j=1
≡ J1 + J2 + J3 .
126
F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
For J1 , we get
J1 ≤
≤
≤
≤
≤
≤
!1/2
m
Z
|f (y)|r
Y
dt
(bj (y) − (bj )2Q )
C
dy
|x − y|n−1
3
|x−y|≤t
ISSN: 1582-5329
No. 24/2010
pp. 119-129
SHARP WEIGHTED INEQUALITIES FOR VECTOR-VALUED
MULTILINEAR COMMUTATORS OF MARCINKIEWICZ
OPERATOR
FENG Qiufen
Abstract. In this paper, we prove the sharp inequality for the vector-valued
multilinear commutators related to the Marcinkiewicz operator. By using the sharp
inequality, we obtain the weighted Lp -norm inequality for the vector-valued multilinear commutators.
2000 Mathematics Subject Classification: 42B20, 42B25.
1. Introduction
Let T be the Calder´on-Zygmund singular integral operator, we know that the
commutator [b, T ](f ) = T (bf )−bT (f ) (where b ∈ BM O(Rn )) is bounded on Lp (Rn )
for 1 < p < ∞ (see [3]). In [9], the sharp estimates for some multilinear commutators
of the Calder´on-Zygmund singular integral operators are obtained. The main purpose of this paper is to prove a sharp inequality for some vector-valued multilinear
commutators related to the Marcinkiewicz operator. By using the sharp inequality, we obtain the weighted Lp -norm inequality for the vector-valued multilinear
commutators.
2. Notations and Results
First let us introduce some notations(see [4][9][10]). In this paper, Q will
R denote
n
−1
a cube of R with sides parallel to the axes, and for a cue Q let fQ = |Q|
Q f (z)dz
and the sharp function of f is defined by
Z
1
f # (x) = sup
|f (y) − fQ |dy.
Q∋x |Q| Q
It is well-known that(see [4])
119
F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
1
f (x) = sup inf
c∈C
|Q|
Q∋x
#
Z
|f (y) − c|dy.
Q
We say that b belongs to BM O(Rn ) if b# belongs to L∞ (Rn ) and define ||b||BM O =
−
→
||b# ||L∞ . If b = (b1 , · · · , bm ), bj ∈ BM O for (j = 1, · · · , m), then
||~b||BM O =
m
Y
||bj ||BM O .
j=1
Let M be the Hardy-Littlewood maximal operator, that is that
Z
−1
|f (y)|dy;
M (f )(x) = sup |Q|
x∈Q
Q
we write that Mp (f ) = (M (|f |p ))1/p for 0 < p < ∞.
Given a positive integer m and 1 ≤ j ≤ m, we denote by Cjm the family of all
finite subsets σ = {σ(1), · · ·, σ(j)} of {1, · · ·, m} of j different elements. For σ ∈ Cjm ,
set σ c = {1, · · ·, m} \ σ. For ~b = (b1 , · · ·, bm ) and σ = {σ(1), · · ·, σ(j)} ∈ Cjm , set
~bσ = (bσ(1) , · · ·, bσ(j) ), bσ = bσ(1) · · · bσ(j) and ||~bσ ||BM O = ||bσ(1) ||BM O · · · ||bσ(j) ||BM O .
We denote the Muckenhoupt weights by Ap , let Ω ∈ Ap and 1 ≤ p < ∞, ω satisfy
the inverse H¨
older inequality, there exists a constant C and 1 < q < ∞, for any cube
Q, we get(see [10])
1
|Q|
1/q
Z
C
ω(x) dx
ω(x)dx.
≤
|Q| Q
Q
Z
q
In this paper, we will study some vector-valued multilinear commutators as following.
Definition.
Let 0 < γ ≤ 1 and Ω be homogeneous of degree zero on Rn such
R
that S n−1 Ω(x′ )dσ(x′ ) = 0. Assume that Ω ∈ Lipγ (S n−1 ), that is there exists a
constant M > 0 such that for any x, y ∈ S n−1 , |Ω(x) − Ω(y)| ≤ M |x − y|γ . Set
bj (j = 1, · · · , m) as a fixed locally integrable function of Rn , then when 1 < r < ∞,
The vector-valued Marcinkiewicz multilinear commutators is defined by
∞
X
~
~
|µbΩ (f )(x)| = ( (µbΩ (fi )(x))r )1/r ,
i=1
where
~
µbΩ (f )(x)
=
Z
0
∞
dt
~
|Ftb (f )(x)|2 3
t
120
1/2
F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
and
~
Ftb (f )(x) =
Set
Z
|x−y|≤t
Ω(x − y)
|x − y|n−1
Ft (f )(x) =
m
Y
j=1
Z
|x−y|≤t
(bj (x) − bj (y)) f (y)dy.
Ω(x − y)
f (y)dy,
|x − y|n−1
we also define that
µΩ (f )(x) =
Z
∞
0
dt
|Ft (f )(x)|2 3
t
1/2
,
which is the Marcinkiewicz operator(see
[11]).
n
o
1/2
R∞
Let H be the space H = h : ||h|| = 0 |h(t)|2 dt/t3
< ∞ . Then, it is clear
that
˜
˜
µΩ (f )(x) = ||Ft (f )(x)|| and µbΩ (f )(x) = ||Ftb (f )(x)||.
~
Note that when b1 = · · · = bm , |µbΩ (f )(x)| is just the m order vector-valued
Marcinkiewicz operator multilinear commutators. It is well known that commutators
are of great interest in harmonic analysis and have been widely studied by many
authors (see [1][4-8][10]). Our main purpose is to establish the sharp inequality for
the vector-valued Marcinkiewicz operator multilinear commutators.
Now we state our main results as following.
3. Main Theorem and proof
First, we will establish the following theorem.
Theorem 1. Let 1 < r < ∞, bj ∈ BM O(Rn ) for j = 1, · · · , m. Then for any
1 < s < ∞, there exists a constant C > 0 such that for any f ∈ C0∞ (Rn ) and any
x
e ∈ Rn ,
m X
X
~ c
~
x) +
||~bσ ||BM O Ms (|µbΩσ (f )|r )(e
x) .
(|µbΩ (f )|r )# (e
x) ≤ C ||~b||BM O Ms (|f |r )(e
j=1 σ∈Cjm
~
Theorem 2. Let 1 < r < ∞, bj ∈ BM O(Rn ) for j = 1, · · · , m. Then |µbΩ |r is
bounded on Lp (Rn ) for 1 < p < ∞.
To proof the theorem,we need the following lemmas.
121
F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
Lemma 1. (see [11]) Let w ∈ Ap and 1 < r < ∞, 1 < p < ∞. When
Ω ∈ Lipr (S n−1 ) for 0 < γ ≤ 1, then |µΩ |r is bounded on Lp (w).
Lemma 2. Let 1 < r < ∞, bj ∈ BM O for j = 1, · · · , k and k ∈ N . Then, we
have
Z Y
k
k
Y
1
|bj (y) − (bj )Q |dy ≤ C
||bj ||BM O
|Q| Q
j=1
and
1
|Q|
Z Y
k
Q j=1
j=1
1/r
|bj (y) − (bj )Q |r dy
≤C
k
Y
||bj ||BM O .
j=1
Proof. For σ ∈ Ckm , where k ≤ m and m ∈ N, we have
Z
1
|(b(y) − (bj )Q )σ |dy ≤ C||bσ ||BM O
|Q| Q
and
1
|Q|
Z
r
|(b(y) − (bj )Q )σ | dy
Q
1/r
≤ C||bσ ||BM O .
We just need to choose pj > 1 and qj > 1 , where 1 ≤ j ≤ k, such that 1/p1 + · · · +
1/pk = 1 and 1/q1 + · · · + 1/qk = 1/r. After that,using the H¨
older’s inequality with
exponent 1/p1 + · · · + 1/pk = 1 and 1/q1 + · · · + 1/qk = 1/r respectively, we may
get the conclusions.
Lemma
0 < γ ≤ 1 and Ω be homogeneous of degree zero on Rn
R 3.(see ′[11]) Let
such that S n−1 Ω(x )dσ(x′ ) = 0. Assume that Ω ∈ Lipγ (S n−1 ), if Q = Q(x0 , d), y ∈
(2Q)c , then
Ω(x − y)
Ω(x0 − y)
|x − x0 |γ
|x − x0 |
|x − y|n−1 − |x0 − y|n−1 ≤ C |x0 − y|n + |x0 − y|n−1+γ .
Proof of Theorem 1. It suffices to prove for f ∈ C0∞ (Rn ) and some constant C0 ,
the following inequality holds:
Z
m X
X
1
~
~
x) +
Ms (|µbΩ (f )|r )(e
x) .
||µb (f )(x)|r − C0 |dx ≤ C Ms (|f |r )(e
|Q| Q Ω
m
j=1 σ∈Cj
122
F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
Fix a cube Q = Q(x0 , d) and x
˜ ∈ Q. We write, f = g + h = gi +R hi , where
gi = fi χ2Q and hi = fi χ(2Q)c . If let ˜b = (b1 , ..., bm ), where (bj )Q = |Q|−1 Q bj (y)dy,
for 1 ≤ j ≤ m. We have
Z
m
Y
˜
(bj (x) − bj (y)) fi (y) Ω(x − y) dy
Ftb (fi )(x) =
|x − y|n−1
|x−y|≤t j=1
Z
m
Y
((bj (x) − (bj )2Q ) − (bj (y) − (bj )2Q )) fi (y) Ω(x − y) dy
=
|x − y|n−1
|x−y|≤t
j=1
=
m X
X
m−j
(−1)
j=0 σ∈Cjm
(b(x) − (b)2Q )σ
Z
(b(y) − (b)2Q )σc fi (y)
|x−y|≤t
= (b1 (x) − (b1 )2Q ) · · · (bm (x) − (bm )2Q )Ft (fi )(x)
+(−1)m Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q )fi )(x)
+
m−1
X
X
˜
(−1)m−j (b(x) − (b)2Q )σ Ftbσ (fi )(x),
j=1 σ∈Cjm
123
c
Ω(x − y)
dy
|x − y|n−1
F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
Then by Minkowski’s inequality, we get
Z
1
~
||µbΩ (f )(x)|r − |µΩ ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q ))h)(x0 )|r |dx
|Q| Q
Z
1
~
|||Ftb (f )(x)||r − ||Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q ))h)(x0 )||r |dx
≤
|Q| Q
1/r
Z X
∞
1
~b
r
≤
||Ft (fi )(x) − Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q )hi )(x0 )||
dx
|Q| Q
i=1
1/r
Z X
∞
1
r
≤
||(b1 (x) − (b1 )2Q ) · · · (bm (x) − (bm )2Q )Ft (fi )(x)||
dx
|Q| Q
i=1
1/r
Z X
∞ m−1
X X
˜bσc
1
r
dx
||(b(x) − (b)2Q )σ Ft (fi )(x)||
+
|Q| Q
m
i=1 j=1 σ∈Cj
1/r
Z X
∞
1
r
||Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q )gi )(x)||
+
|Q| Q
i=1
Z X
∞
1
||Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q )hi )(x)
+
|Q| Q
i=1
1/r
r
dx
−Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q )hi )(x0 )||
= I1 + I2 + I3 + I4 .
For I1 , by H¨
older’s inequality with exponent 1/s′ + 1/s = 1 and lemma 2, we get
I1
1
≤ C
|Q|
Z
|
m
Y
(bj (x) − (bj )2Q )||µΩ (f )(x)|r dx
Q j=1
1
≤ C
|2Q|
Z
|
m
Y
2Q j=1
s′
1/s′
(bj (x) − (bj )2Q )| dx
≤ C||~b||BM O Ms (|µΩ (f )|r )(˜
x).
124
1
|Q|
Z
Q
|µΩ (f )(x)|sr dx
1/s
F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
For I2 , by H¨
older’s inequality with exponent 1/s′ + 1/s = 1, we have
I2 =
≤
1
|Q|
Z m−1
X X
m−1
X
Q j=1 σ∈C m
j
X
j=1 σ∈Cjm
≤ C
Z
1
|Q|
Q
~
c
~
c
||(b(x) − (b)2Q )σ Ftbσ (f )(x)||r dx
|(b(x) − (b)2Q )σ ||µbΩσ (f )(x)|r dx
m−1
X
1/s′
1/s
Z
X 1 Z
~bσc
1
s
s′
|(b(x) − (b)2Q )σ | dx
|µ (f )(x)|r dx
|2Q| 2Q
|Q| Q Ω
m
m−1
X
X
j=1 σ∈Cj
≤ C
~ c
x).
||~bσ ||BM O Ms (|µbΩσ (f )|r )(˜
j=1 σ∈Cjm
For I3 , we choose
p
L (Rn )(see lemma 1)
I3
some p, such that 1 < p < s, by the boundness of |µΩ |r on
and H¨
older’s inequality, we gain
Z
m
Y
1
=
||Ft ( (bj (y) − (bj )2Q )g)(x)||r dx
|Q| Q
j=1
1/p
Z
m
Y
1
≤
|µΩ ( (bj (y) − (bj )2Q )f χ2Q )(x)|pr dx
|Q| Rn
j=1
≤ C
1
|Q|
Z
1
≤ C
|2Q|
|
m
Y
Rn j=1
Z
|
1/p
(bj (y) − (bj )2Q )|p |f χ2Q |pr dx
m
Y
sp/(s−p)
(bj (y) − (bj )2Q )|
2Q j=1
≤ C||~b||BM O Ms (|f |r )(˜
x).
125
(s−p)/sp
dx
1
|2Q|
Z
2Q
1/s
|f (x)|sr dx
F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
For I4 , we have
||Ft (
=
−
m
Y
(bj − (bj )2Q )h)(x) − Ft (
j=1
Z
∞
0
|
m
Y
(bj − (bj )2Q )h)(x0 )||r
j=1
Z
Z
|x−y|≤t
|x0 −y|≤t
m
Ω(x − y)|h(y)|r Y
(bj (y) − (bj )2Q ) dy
|x − y|n−1
j=1
Ω(x0 − y)|h(y)|r
|x0 − y|n−1
m
Y
j=1
1/2
dt
(bj (y) − (bj )2Q ) dy|2 3
t
2 1/2
Y
m
|Ω(x − y)||h(y)|r
dy dt
(b
(y)
−
(b
)
)
j
j
2Q
n−1
|x − y|
t3
|x0 −y|≤t,|x0 −y|>t
0
j=1
2 1/2
Y
Z ∞ Z
m
|Ω(x0 − y)||h(y)|r
dy dt
+
(b
(y)
−
(b
)
)
j
j
2Q
n−1
|x0 − y|
t3
0
|x−y|>t,|x0 −y|≤t
j=1
Z ∞ "Z
|Ω(x − y)| |Ω(x0 − y)|
−
+
n−1
|x0 − y|n−1
|x−y|≤t,|x0 −y|≤t |x − y|
0
2 1/2
Y
m
dt
× (bj (y) − (bj )2Q ) |h(y)|r dy 3
t
Z ∞ Z
≤
j=1
≡ J1 + J2 + J3 .
126
F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
For J1 , we get
J1 ≤
≤
≤
≤
≤
≤
!1/2
m
Z
|f (y)|r
Y
dt
(bj (y) − (bj )2Q )
C
dy
|x − y|n−1
3
|x−y|≤t