Paper-12-Acta24.2010. 131KB Jun 04 2011 12:03:10 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 24/2010
pp. 119-129

SHARP WEIGHTED INEQUALITIES FOR VECTOR-VALUED
MULTILINEAR COMMUTATORS OF MARCINKIEWICZ
OPERATOR

FENG Qiufen
Abstract. In this paper, we prove the sharp inequality for the vector-valued
multilinear commutators related to the Marcinkiewicz operator. By using the sharp
inequality, we obtain the weighted Lp -norm inequality for the vector-valued multilinear commutators.
2000 Mathematics Subject Classification: 42B20, 42B25.
1. Introduction
Let T be the Calder´on-Zygmund singular integral operator, we know that the
commutator [b, T ](f ) = T (bf )−bT (f ) (where b ∈ BM O(Rn )) is bounded on Lp (Rn )
for 1 < p < ∞ (see [3]). In [9], the sharp estimates for some multilinear commutators
of the Calder´on-Zygmund singular integral operators are obtained. The main purpose of this paper is to prove a sharp inequality for some vector-valued multilinear
commutators related to the Marcinkiewicz operator. By using the sharp inequality, we obtain the weighted Lp -norm inequality for the vector-valued multilinear

commutators.
2. Notations and Results
First let us introduce some notations(see [4][9][10]). In this paper, Q will
R denote
n
−1
a cube of R with sides parallel to the axes, and for a cue Q let fQ = |Q|
Q f (z)dz
and the sharp function of f is defined by
Z
1
f # (x) = sup
|f (y) − fQ |dy.
Q∋x |Q| Q
It is well-known that(see [4])

119

F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...


1
f (x) = sup inf
c∈C
|Q|
Q∋x
#

Z

|f (y) − c|dy.

Q

We say that b belongs to BM O(Rn ) if b# belongs to L∞ (Rn ) and define ||b||BM O =


||b# ||L∞ . If b = (b1 , · · · , bm ), bj ∈ BM O for (j = 1, · · · , m), then
||~b||BM O =

m

Y

||bj ||BM O .

j=1

Let M be the Hardy-Littlewood maximal operator, that is that
Z
−1
|f (y)|dy;
M (f )(x) = sup |Q|
x∈Q

Q

we write that Mp (f ) = (M (|f |p ))1/p for 0 < p < ∞.
Given a positive integer m and 1 ≤ j ≤ m, we denote by Cjm the family of all
finite subsets σ = {σ(1), · · ·, σ(j)} of {1, · · ·, m} of j different elements. For σ ∈ Cjm ,
set σ c = {1, · · ·, m} \ σ. For ~b = (b1 , · · ·, bm ) and σ = {σ(1), · · ·, σ(j)} ∈ Cjm , set
~bσ = (bσ(1) , · · ·, bσ(j) ), bσ = bσ(1) · · · bσ(j) and ||~bσ ||BM O = ||bσ(1) ||BM O · · · ||bσ(j) ||BM O .

We denote the Muckenhoupt weights by Ap , let Ω ∈ Ap and 1 ≤ p < ∞, ω satisfy
the inverse H¨
older inequality, there exists a constant C and 1 < q < ∞, for any cube
Q, we get(see [10])


1
|Q|

1/q
Z
C
ω(x) dx
ω(x)dx.

|Q| Q
Q

Z


q

In this paper, we will study some vector-valued multilinear commutators as following.
Definition.
Let 0 < γ ≤ 1 and Ω be homogeneous of degree zero on Rn such
R
that S n−1 Ω(x′ )dσ(x′ ) = 0. Assume that Ω ∈ Lipγ (S n−1 ), that is there exists a
constant M > 0 such that for any x, y ∈ S n−1 , |Ω(x) − Ω(y)| ≤ M |x − y|γ . Set
bj (j = 1, · · · , m) as a fixed locally integrable function of Rn , then when 1 < r < ∞,
The vector-valued Marcinkiewicz multilinear commutators is defined by

X
~
~
|µbΩ (f )(x)| = ( (µbΩ (fi )(x))r )1/r ,
i=1

where
~
µbΩ (f )(x)


=

Z

0



dt
~
|Ftb (f )(x)|2 3
t

120

1/2

F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...


and
~

Ftb (f )(x) =
Set

Z

|x−y|≤t



Ω(x − y) 
|x − y|n−1

Ft (f )(x) =

m
Y


j=1

Z

|x−y|≤t



(bj (x) − bj (y)) f (y)dy.

Ω(x − y)
f (y)dy,
|x − y|n−1

we also define that
µΩ (f )(x) =

Z




0

dt
|Ft (f )(x)|2 3
t

1/2

,

which is the Marcinkiewicz operator(see
[11]).
n
o
1/2
R∞
Let H be the space H = h : ||h|| = 0 |h(t)|2 dt/t3
< ∞ . Then, it is clear
that

˜
˜
µΩ (f )(x) = ||Ft (f )(x)|| and µbΩ (f )(x) = ||Ftb (f )(x)||.
~

Note that when b1 = · · · = bm , |µbΩ (f )(x)| is just the m order vector-valued
Marcinkiewicz operator multilinear commutators. It is well known that commutators
are of great interest in harmonic analysis and have been widely studied by many
authors (see [1][4-8][10]). Our main purpose is to establish the sharp inequality for
the vector-valued Marcinkiewicz operator multilinear commutators.
Now we state our main results as following.
3. Main Theorem and proof
First, we will establish the following theorem.
Theorem 1. Let 1 < r < ∞, bj ∈ BM O(Rn ) for j = 1, · · · , m. Then for any
1 < s < ∞, there exists a constant C > 0 such that for any f ∈ C0∞ (Rn ) and any
x
e ∈ Rn ,


m X

X
~ c
~
x) +
||~bσ ||BM O Ms (|µbΩσ (f )|r )(e
x) .
(|µbΩ (f )|r )# (e
x) ≤ C ||~b||BM O Ms (|f |r )(e
j=1 σ∈Cjm

~

Theorem 2. Let 1 < r < ∞, bj ∈ BM O(Rn ) for j = 1, · · · , m. Then |µbΩ |r is
bounded on Lp (Rn ) for 1 < p < ∞.
To proof the theorem,we need the following lemmas.
121

F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...

Lemma 1. (see [11]) Let w ∈ Ap and 1 < r < ∞, 1 < p < ∞. When
Ω ∈ Lipr (S n−1 ) for 0 < γ ≤ 1, then |µΩ |r is bounded on Lp (w).
Lemma 2. Let 1 < r < ∞, bj ∈ BM O for j = 1, · · · , k and k ∈ N . Then, we
have
Z Y
k
k
Y
1
|bj (y) − (bj )Q |dy ≤ C
||bj ||BM O
|Q| Q
j=1

and



 1
|Q|

Z Y
k

Q j=1

j=1

1/r

|bj (y) − (bj )Q |r dy 

≤C

k
Y

||bj ||BM O .

j=1

Proof. For σ ∈ Ckm , where k ≤ m and m ∈ N, we have
Z
1
|(b(y) − (bj )Q )σ |dy ≤ C||bσ ||BM O
|Q| Q
and



1
|Q|

Z

r

|(b(y) − (bj )Q )σ | dy

Q

1/r

≤ C||bσ ||BM O .

We just need to choose pj > 1 and qj > 1 , where 1 ≤ j ≤ k, such that 1/p1 + · · · +
1/pk = 1 and 1/q1 + · · · + 1/qk = 1/r. After that,using the H¨
older’s inequality with
exponent 1/p1 + · · · + 1/pk = 1 and 1/q1 + · · · + 1/qk = 1/r respectively, we may
get the conclusions.
Lemma
0 < γ ≤ 1 and Ω be homogeneous of degree zero on Rn
R 3.(see ′[11]) Let
such that S n−1 Ω(x )dσ(x′ ) = 0. Assume that Ω ∈ Lipγ (S n−1 ), if Q = Q(x0 , d), y ∈
(2Q)c , then




Ω(x − y)
Ω(x0 − y)
|x − x0 |γ
|x − x0 |

|x − y|n−1 − |x0 − y|n−1 ≤ C |x0 − y|n + |x0 − y|n−1+γ .
Proof of Theorem 1. It suffices to prove for f ∈ C0∞ (Rn ) and some constant C0 ,
the following inequality holds:




Z
m X
X
1
~
~
x) +
Ms (|µbΩ (f )|r )(e
x) .
||µb (f )(x)|r − C0 |dx ≤ C Ms (|f |r )(e
|Q| Q Ω
m
j=1 σ∈Cj

122

F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...

Fix a cube Q = Q(x0 , d) and x
˜ ∈ Q. We write, f = g + h = gi +R hi , where
gi = fi χ2Q and hi = fi χ(2Q)c . If let ˜b = (b1 , ..., bm ), where (bj )Q = |Q|−1 Q bj (y)dy,
for 1 ≤ j ≤ m. We have


Z
m
Y
˜
 (bj (x) − bj (y)) fi (y) Ω(x − y) dy
Ftb (fi )(x) =
|x − y|n−1
|x−y|≤t j=1


Z
m
Y
 ((bj (x) − (bj )2Q ) − (bj (y) − (bj )2Q )) fi (y) Ω(x − y) dy
=
|x − y|n−1
|x−y|≤t
j=1

=

m X
X

m−j

(−1)

j=0 σ∈Cjm

(b(x) − (b)2Q )σ

Z

(b(y) − (b)2Q )σc fi (y)

|x−y|≤t

= (b1 (x) − (b1 )2Q ) · · · (bm (x) − (bm )2Q )Ft (fi )(x)
+(−1)m Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q )fi )(x)
+

m−1
X

X

˜

(−1)m−j (b(x) − (b)2Q )σ Ftbσ (fi )(x),

j=1 σ∈Cjm

123

c

Ω(x − y)
dy
|x − y|n−1

F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...

Then by Minkowski’s inequality, we get
Z
1
~
||µbΩ (f )(x)|r − |µΩ ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q ))h)(x0 )|r |dx
|Q| Q
Z
1
~
|||Ftb (f )(x)||r − ||Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q ))h)(x0 )||r |dx

|Q| Q
1/r
Z X

1
~b
r

||Ft (fi )(x) − Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q )hi )(x0 )||
dx
|Q| Q
i=1
1/r
Z X

1
r

||(b1 (x) − (b1 )2Q ) · · · (bm (x) − (bm )2Q )Ft (fi )(x)||
dx
|Q| Q
i=1
1/r
Z X
∞ m−1
X X
˜bσc
1
r
dx
||(b(x) − (b)2Q )σ Ft (fi )(x)||
+
|Q| Q
m
i=1 j=1 σ∈Cj

1/r
Z X

1
r
||Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q )gi )(x)||
+
|Q| Q
i=1
Z X

1
||Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q )hi )(x)
+
|Q| Q
i=1
1/r
r
dx
−Ft ((b1 − (b1 )2Q ) · · · (bm − (bm )2Q )hi )(x0 )||

= I1 + I2 + I3 + I4 .

For I1 , by H¨
older’s inequality with exponent 1/s′ + 1/s = 1 and lemma 2, we get
I1

1
≤ C
|Q|


Z

|

m
Y

(bj (x) − (bj )2Q )||µΩ (f )(x)|r dx

Q j=1

1
≤ C
|2Q|

Z

|

m
Y

2Q j=1

s′

1/s′

(bj (x) − (bj )2Q )| dx

≤ C||~b||BM O Ms (|µΩ (f )|r )(˜
x).

124



1
|Q|

Z

Q

|µΩ (f )(x)|sr dx

1/s

F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...
For I2 , by H¨
older’s inequality with exponent 1/s′ + 1/s = 1, we have
I2 =



1
|Q|

Z m−1
X X

m−1
X

Q j=1 σ∈C m
j

X

j=1 σ∈Cjm

≤ C

Z

1
|Q|

Q

~

c

~

c

||(b(x) − (b)2Q )σ Ftbσ (f )(x)||r dx
|(b(x) − (b)2Q )σ ||µbΩσ (f )(x)|r dx

m−1
X

1/s′ 
1/s
Z
X  1 Z
~bσc
1
s
s′
|(b(x) − (b)2Q )σ | dx
|µ (f )(x)|r dx
|2Q| 2Q
|Q| Q Ω
m

m−1
X

X

j=1 σ∈Cj

≤ C

~ c
x).
||~bσ ||BM O Ms (|µbΩσ (f )|r )(˜

j=1 σ∈Cjm

For I3 , we choose
p
L (Rn )(see lemma 1)
I3

some p, such that 1 < p < s, by the boundness of |µΩ |r on
and H¨
older’s inequality, we gain

Z
m
Y
1
=
||Ft ( (bj (y) − (bj )2Q )g)(x)||r dx
|Q| Q
j=1

1/p
Z
m
Y
1
≤ 
|µΩ ( (bj (y) − (bj )2Q )f χ2Q )(x)|pr dx
|Q| Rn
j=1



≤ C


1
|Q|

Z

1
≤ C
|2Q|

|

m
Y

Rn j=1

Z

|

1/p

(bj (y) − (bj )2Q )|p |f χ2Q |pr dx

m
Y

sp/(s−p)

(bj (y) − (bj )2Q )|

2Q j=1

≤ C||~b||BM O Ms (|f |r )(˜
x).

125

(s−p)/sp

dx



1
|2Q|

Z

2Q

1/s

|f (x)|sr dx

F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...

For I4 , we have
||Ft (

=





m
Y

(bj − (bj )2Q )h)(x) − Ft (

j=1

Z



0

|

m
Y

(bj − (bj )2Q )h)(x0 )||r

j=1

Z

Z

|x−y|≤t

|x0 −y|≤t



m
Ω(x − y)|h(y)|r  Y
(bj (y) − (bj )2Q ) dy
|x − y|n−1
j=1



Ω(x0 − y)|h(y)|r 
|x0 − y|n−1

m
Y

j=1



1/2

dt
(bj (y) − (bj )2Q ) dy|2 3 
t

2 1/2


Y
m


|Ω(x − y)||h(y)|r
dy  dt 
(b
(y)

(b
)
)
j
j
2Q


n−1
|x − y|
t3
|x0 −y|≤t,|x0 −y|>t
0

j=1
2 1/2




Y
Z ∞ Z
m


|Ω(x0 − y)||h(y)|r
dy  dt 


+
(b
(y)

(b
)
)
j
j
2Q


n−1
|x0 − y|
t3
0
|x−y|>t,|x0 −y|≤t

j=1


Z ∞ "Z
|Ω(x − y)| |Ω(x0 − y)|



+

n−1
|x0 − y|n−1
|x−y|≤t,|x0 −y|≤t |x − y|
0


2 1/2

Y
m


dt
× (bj (y) − (bj )2Q ) |h(y)|r dy  3 
t




Z ∞ Z

≤ 


j=1

≡ J1 + J2 + J3 .

126

F. Qiufen - Sharp weighted inequalities for vector-valued multilinear comutators ...

For J1 , we get
J1 ≤













!1/2

m
Z
|f (y)|r
Y
dt
(bj (y) − (bj )2Q )
C
dy
|x − y|n−1

3
|x−y|≤t

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52