Paper23-Acta26-2011. 114KB Jun 04 2011 12:03:16 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 26/2011
pp. 217-224

NEIGHBOURHOODS AND PARTIAL SUMS OF CERTAIN
SUBCLASS OF ANALYTIC FUNCTIONS

Yong Sun, Zhi-Gang Wang and Rui Xiao
Abstract. The main purpose of the present paper is to derive the neighborhoods and partial sums of certain subclass of analytic functions which was introduced
and investigated recently by Liu and Liu [Z.-W. Liu and M.-S. Liu, Properties and
characteristics of certain subclasses of analytic functions, J. South China Normal
Univ. Natur. Sci. Ed. 28 (2010), 11–15].
2000 Mathematics Subject Classification: 30C45.
1.Introduction
Let Am denote the class of functions f of the form
f (z) = z +


X


ak z k

(m ∈ N := {1, 2, 3, . . .}),

(1)

k=m+1

which are analytic in the open unit disk
U := {z : z ∈ C

and

|z| < 1}.

In 2002, Owa and Nishiwaki [12] introduced the class Mm (β) which was defined
by





zf ′ (z)
f (z)



1).

(2)

Assuming that α ≧ 0, β > 1 and f ∈ Am , we say that a function f ∈ Mm (α, β)
if it satisfies the condition

 ′


z 2 f ′′ (z)
m


zf (z)

< αβ β +
−1 +β−
(z ∈ U).
(3)

f (z)
f (z)
2
2
217

Y. Sun, Z. Wang, R. Xiao - Neighborhoods and partial sums of certain subclass...

Obviously, Mm (0, β) = Mm (β).
For convenience, throughout this paper, we write


m


γm := αβ β +
−1 +β−
.
2
2

(4)

Recently, Liu and Liu [11] proved that Mm (α, β) ⊂ Mm (β) and derived various
properties and characteristics such as inclusion relationships, sufficient conditions
and Fekete-Szeg¨
o inequality for the class Mm (α, β). In the present paper, we aim
at proving the neighborhoods and partial sums of the class Mm (α, β).
2.Main Results

Following the earlier works (based upon the familiar concept of neighborhood of
analytic functions) by Goodman [9] and Ruscheweyh [13], and (more recently) by
Altinta¸s et al. [1,2,3,4], Cˇ
ata¸s [5], Frasin [7], Keerthi et al. [10] and Srivastava et al.

[15], we begin by introducing here the δ-neighborhood of a function f ∈ Am of the
form (1) by means of the definition
(

X
Nδ (f ) := g ∈ Am : g(z) = z +
bk z k and
k=m+1


X

k=m+1

k(1 + kα − α) − γm
|ak − bk | ≦ δ
γm − 1

(δ, α ≧ 0; β > 1; γm > 1) .
(5)


By making use of the definition (5), we now derive the following result.
Theorem 1. If f ∈ Am satisfies the condition
f (z) + εz
∈ Mm (α, β)
1+ε

(ε ∈ C; |ε| < δ; δ > 0),

(6)

then
Nδ (f ) ⊂ Mm (α, β).
Proof. By noting that the condition (3) can be rewritten as follows:




z 2 f ′′ (z)
zf ′ (z)

+
α


′ f (z) 2 ′′ f (z)
0),



(f ∗ h)(z)
≧δ



z

(z ∈ U; δ > 0).

(11)


We now suppose that

q(z) = z +


X

dk z k ∈ Nδ (f ).

k=m+1

It follows from (5) that





X
((q − f ) ∗ h)(z) X
k(1 + kα − α) − γm


k−1

=
(dk − ak )ck z
|dk − ak | < δ.




z
γm − 1
k=m+1

k=m+1

(12)
Combining (11) and (12), we easily find that






(q ∗ h)(z) ([f + (q − f )] ∗ h)(z) (f ∗ h)(z) ((q − f ) ∗ h)(z)

=


> 0,





z
z
z
z

which implies that


(q ∗ h)(z)
6= 0
z

219

(z ∈ U).

Y. Sun, Z. Wang, R. Xiao - Neighborhoods and partial sums of certain subclass...

Therefore, we conclude that
q(z) ∈ Nδ (f ) ⊂ Mm (α, β).
We thus complete the proof of Theorem 1.
Next, we derive the partial sums of the class Mm (α, β). For some recent investigations involving the partial sums in analytic function theory, one can find in [6,
8, 14] and the references cited therein.
Theorem 2. Let f ∈ Am be given by (1) and define the partial sums fn (z) of f by
fn (z) = z +

n
X

ak z k

(n ∈ N; n ≧ m + 1).

(13)

k=m+1

If

X
k(1 + kα − α) − γm
|ak | ≦ 1
γm − 1

(α ≧ 0; β > 1; γm > 1) ,

(14)

k=m+1

then
1. f ∈ Mm (α, β);
2.




f (z)
fn (z)









(n + 1)(1 + nα) + 1 − 2γm
(n + 1)(1 + nα) − γm

(n ∈ N; n ≧ m + 1 ; z ∈ U),
(15)

and




fn (z)
f (z)

(n + 1)(1 + nα) − γm
n(1 + α + nα)

(n ∈ N; n ≧ m + 1 ; z ∈ U). (16)

The bounds in (15) and (16) are sharp with the extremal function given by
(20).
Proof. (1) Suppose that f1 (z) = z. We know that z ∈ Mm (α, β), which implies
that
f1 (z) + εz
= z ∈ Mm (α, β).
1+ε
From (14), we easily find that

X
k(1 + kα − α) − γm
|ak − 0| ≦ 1,
γm − 1

k=m+1

220

Y. Sun, Z. Wang, R. Xiao - Neighborhoods and partial sums of certain subclass...

which implies that f ∈ N1 (z). In view of Theorem 1, we deduce that
f ∈ N1 (z) ⊂ Mm (α, β).
(2) It is easy to verify that
(n + 1)(1 + nα) − γm
n(1 + nα − α) − γm
(n + 1)[1 + (n + 1)α − α] − γm
=
>
>1
γm − 1
γm − 1
γm − 1
where (n ∈ N). Therefore, we have
n
X

|ak | +

k=m+1



X
(n + 1)(1 + nα) − γm X
k(1 + kα − α) − γm
|ak | ≦ 1.
|ak | ≦
γm − 1
γm − 1
k=m+1

k=n+1

(17)

We now suppose that


(n + 1)(1 + nα) − γm f (z)
(n + 1)(1 + nα) + 1 − 2γm

ψ(z) =
γm − 1
fn (z)
(n + 1)(1 + nα) − γm

P
(n+1)(1+nα)−γm
ak z k−1
γm −1
k=n+1
=1+
.
n
P
ak z k−1
1+

(18)

k=m+1

It follows from (17) and (18) that


ψ(z) − 1


ψ(z) + 1 ≦
which shows that

(n+1)(1+nα)−γm
γm −1

2−2

n
P

|ak | −

k=m+1


P

|ak |

k=n+1

(n+1)(1+nα)−γm
γm −1

ℜ (ψ(z)) ≧ 0


P

≦1

(z ∈ U),

|ak |

k=n+1

(z ∈ U).

(19)

Combining (18) and (19), we deduce that the assertion (15) holds true.
Moreover, if we put
f (z) = z +

γm − 1
z n+1
(n + 1)(1 + nα) − γm

(n ∈ N \ {1, 2, . . . , m − 1}; m ∈ N), (20)

then for z = reiπ/n , we have
f (z)
γm − 1
(n + 1)(1 + nα) + 1 − 2γm
=1+
zn →
fn (z)
(n + 1)(1 + nα) − γm
(n + 1)(1 + nα) − γm
221

(r → 1− ),

Y. Sun, Z. Wang, R. Xiao - Neighborhoods and partial sums of certain subclass...

which implies that the bound in (15) is the best possible for each n ∈ N\{1, 2, . . . , m − 1}.
Similarly, we suppose that


n(1 + α + nα) fn (z) (n + 1)(1 + nα) − γm

ϕ(z) =
γm − 1
f (z)
n(1 + α + nα)

P
n(1+α+nα)
ak z k−1
(21)
γm −1
k=n+1
=1−
.

P
k−1
ak z
1+
k=m+1

In view of (17) and (21), we conclude that


ϕ(z) − 1


ϕ(z) + 1 ≦

n(1+α+nα)
γm −1

2−2

n
P

|ak | −

k=m+1

which implies that


P

|ak |

k=n+1

(n+1)(1+nα)+1−2γm
γm −1

ℜ (ϕ(z)) ≧ 0


P

≦1

(z ∈ U),

|ak |

k=n+1

(z ∈ U).

(22)

Combining (21) and (22), we readily get the assertion (16) of Theorem 2. The bound
in (16) is sharp with the extremal function f given by (20).
The proof of Theorem 2 is thus completed.
Taking α = 0 in Theorem 2, we obtain the following corollary.
Corollary 1. Let f ∈ Am be given by (1) and define the partial sums fn (z) of f by
(13). If f satisfies

X

(k − β) |ak | ≦ β − 1

(β > 1),

(23)

(n ∈ N; n ≧ m + 1 ; z ∈ U),

(24)

(n ∈ N; n ≧ m + 1 ; z ∈ U).

(25)

k=m+1

then f ∈ Mm (β),


n + 2 − 2β
f (z)


fn (z)
n+1−β
and




fn (z)
f (z)





n+1−β
n

The bounds in (24) and (25) are sharp with the extremal function given by
f (z) = z +

β−1
z n+1
n+1−β

(n ∈ N \ {1, 2, . . . , m − 1}; m ∈ N).

222

(26)

Y. Sun, Z. Wang, R. Xiao - Neighborhoods and partial sums of certain subclass...

Finally, we turn to ratios involving derivatives. The proof of Theorem 3 below
is much akin to that of Theorem 2, we here choose to omit the analogous details.
Theorem 3. Let f ∈ Am be given by (1) and define the partial sums fn (z) of f by
(13). If the condition (14) holds, then
 ′

(n + 1)(2 + nα − γm ) − γm
f (z)

(n ∈ N; n ≧ m + 1 ; z ∈ U), (27)


fn (z)
(n + 1)(1 + nα) − γm
and




fn′ (z)
f ′ (z)





(n + 1)(1 + nα) − γm
(n + 1)(nα + γm ) − γm

(n ∈ N; n ≧ m + 1 ; z ∈ U).

(28)

The bounds in (27) and (28) are sharp with the extremal function given by (20).
Taking α = 0 in Theorem 3, we obtain the following corollary.
Corollary 2. Let f ∈ Am be given by (1) and define the partial sums fn (z) of f by
(13). If the condition (23) holds, then
 ′

(n + 1)(2 − β) − β
f (z)

(n ∈ N; n ≧ m + 1 ; z ∈ U),
(29)


fn (z)
n+1−β
and




fn′ (z)
f ′ (z)





n+1−β


(n ∈ N; n ≧ m + 1 ; z ∈ U).

(30)

The bounds in (29) and (30) are sharp with the extremal function given by (26).
Acknowledgements. The present investigation was supported by the Scientific
Research Fund of Huaihua University under Grant HHUQ2009-03 of the People’s
Republic of China.
References
[1] O. Altinta¸s, Neighborhoods of certain p-valently analytic functions with negative coefficients, Appl. Math. Comput. 187 (2007), 47–53.
[2] O. Altinta¸s and S. Owa, Neighborhoods of certain analytic functions with
negative coefficients, Int. J. Math. Math. Sci. 19 (1996), 797–800.
¨ Ozkan
¨
[3] O. Altinta¸s, O.
and H. M. Srivastava, Neighborhoods of a class of
analytic functions with negative coefficients, Appl. Math. Lett. 13 (2000), 63–67.
¨ Ozkan
¨
[4] O. Altinta¸s, O.
and H. M. Srivastava, Neighborhoods of a certain family
of multivalent functions with negative coefficients, Comput. Math. Appl. 47 (2004),
1667–1672.
223

Y. Sun, Z. Wang, R. Xiao - Neighborhoods and partial sums of certain subclass...

[5] A. Cˇ
ata¸s, Neighborhoods of a certain class of analytic functions with negative
coefficients, Banach J. Math. Anal. 3 (2009), 111–121.
[6] B. A. Frasin, Partial sums of certain analytic and univalent functions, Acta
Math. Acad. Paedagog. Nyh´
azi. (N.S.) 21 (2005), 135–145. (electronic)
[7] B. A. Frasin, Neighborhoods of certain multivalent functions with negative
coefficients, Appl. Math. Comput. 193 (2007), 1–6.
[8] B. A. Frasin, Generalization of partial sums of certain analytic and univalent
functions, Appl. Math. Lett. 21 (2008), 735–741.
[9] A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer.
Math. Soc. 8 (1957), 598–601.
[10] B. S. Keerthi, A. Gangadharan and H. M. Srivastava, Neighborhoods of
certain subclasses of analytic functions of complex order with negative coefficients,
Math. Comput. Modelling 47 (2008), 271–277.
[11] Z.-W. Liu and M.-S. Liu, Properties and characteristics of certain subclasses
of an. functions, J. South China Normal Univ. Natur. Sci. Ed. 28 (2010), 11–15.
[12] S. Owa, J. Nichiwaki, Coefficient for certain classes of analytic functions, J.
Inequal. Pure Appl. Math. 3 (2002), Article 72, pp. 1–5. (electronic)
[13] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math.
Soc. 81 (1981), 521–527.
[14] H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal.
Appl. 209 (1997), 221–227.
[15] H. M. Srivastava, S. S. Eker, and B. Seker, Inclusion and neighborhood
properties for certain classes of multivalently analytic functions of complex order
associated with the convolution structure, Appl. Math. Comput. 212 (2009), 66–71.
Yong Sun
Department of Mathematics, Huaihua University,
Huaihua 418008, Hunan, People’s Republic of China
E-mail: yongsun2008@foxmail.com
Zhi-Gang Wang
School of Mathematics and Computing Science, Changsha University of Science and
Technology,
Changsha 410076, Hunan, People’s Republic of China
E-mail: zhigangwang@foxmail.com
Rui Xiao
Department of Electronic Science, Huizhou University,
Huizhou 516007, Guangdong, People’s Republic of China
E-mail: xiaorui810302@163.com
224

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52