art230105. 103KB Jun 04 2011 12:08:21 AM

ACTA UNIVERSITATIS APULENSIS

No 9/2005

SOME SUBCLASSES OF n -UNIFORMLY CLOSE TO CONVEX
FUNCTIONS WITH NEGATIVE COEFFICIENTS

Mugur Acu, Shigeyoshi Owa
Abstract.In this paper we define some subclasses on n-uniformly close
to convex functions with negative coefficients and we obtain necessary and
sufficient conditions and some other properties regarding this classes.
2000 Mathematics Subject Classification: 30C45
Key words and phrases: Uniformly close to convex functions, Generalized
Alexander operator, Necessary and sufficient conditions.
1.Introduction
Let H(U ) be the set of functions which are regular in the unit disc U =
{z ∈ C : |z| < 1}, A = {f ∈ H(U ) : f (0) = f ′ (0) − 1 = 0} and S = {f ∈ A :
f is univalent in U }.
We recall here the definition of the well - known class of starlike functions:
)


(

zf ′ (z)
>0, z∈U .
S = f ∈ A : Re
f (z)


In [8] the subfamily T of S consisting of functions f of the form
f (z) = z −


X

aj z j , aj ≥ 0, j = 2, 3, ..., z ∈ U.

(1)

j=2


was introduced.
Theorem 1.[7] If f (z) = z −


P

j=2

next assertions are equivalent:

aj z j , aj ≥ 0, j = 2, 3, ..., z ∈ U then the

39

Mugur Acu and Shigeyoshi Owa - Some subclasses of n-uniformly ...

(i)


P


j=2

jaj ≤ 1

(ii)f ∈ T
T
(iii)f ∈ T ∗ , where T ∗ = T S ∗ and S ∗ is the well-known class of starlike
functions.
Let Dn be the Salagean differential operator (see [6]) Dn : A → A, n ∈ N,
defined as:
D0 f (z) = f (z)
D1 f (z) = Df (z) = zf ′ (z)
Dn f (z) = D(Dn−1 f (z)).
Remark 1.If f ∈ T , f (z) = z −


P

j=2


P

j=2

n

j

j aj z .

aj z j , z ∈ U then Dn f (z) = z −

Let consider the generalized Alexander operator I λ : A → A defined as:
I λ f (z) = z +

where f (z) = z +


P


j=2


X
1

λ
j=2 j

aj z j , λ ∈ R , λ ≥ 0 ,

(2)

aj z j .

For λ = 1 we obtain the Alexander integral operator.
The purpose of this note is to define, using the Salagean differential operator, some subclasses on n-uniformly close to convex functions with negative
coefficients and necessary and sufficient conditions and some preserving properties of the generalized Alexander operator regarding this classes.
2.Preliminary results

Let k ∈ [0, ∞), n ∈ N∗ . We define the class (k, n) − S ∗ (see the definition
of the class (k, n) − ST in [2]) by f ∈ S ∗ and
Re

Dn f (z)
Dn f (z)
>k
− 1, z ∈ U .
f (z)
f (z)

40

Mugur Acu and Shigeyoshi Owa - Some subclasses of n-uniformly ...
Remark 2.(for more details see [2]).We denote by pk , k ∈ [0, ∞) the
function which maps the unit disk conformally onto the region Ωk , such that
1 ∈ Ωk and
∂Ωk = u + iv : u2 = k 2 (u − 1)2 + k 2 v 2 .
The domain Ωk is elliptic for k > 1, hyperbolic when 0 < k < 1, parabolic for
k = 1, and a right half-plane when k = 0. In this conditions, a function f is

n f (z)
n f (z)
in the class (k, n) − S ∗ if and only if Df (z)
≺ pk or Df (z)
take all values in
the domain Ωk .
In [1] is defined the class (k, n) − CC thus:
Definition 1. Let f ∈ A, k ∈ [0, ∞) and n ∈ N∗ . We say that the
function f is in the class (k, n)−CC with respect to the function g ∈ (k, n)−S ∗
if
Dn f (z)
Dn f (z)
>k·
− 1, z ∈ U .
Re
g(z)
g(z)
Remark 3.Geometric interpretation: f ∈ (k, n) − CC with respect to the
n f (z)
n f (z)

function g ∈ (k, n) − S ∗ if and only if Dg(z)
≺ pk (see Remark 1.) or Dg(z)
take all values in the domain Ωk (see Remark 1).
Remark 4.From the geometric properties of the domains Ωk we have that
(k1 , n) − CC ⊂ (k2 , n) − CC, where k1 ≥ k2 .
3.Main results
Definition 2.We define the class (k, n) − T ∗ , where k ∈ [0, ∞) and n ∈
N∗ , through
\
(k, n) − T ∗ = (k, n) − S ∗ T .
Theorem 2.Let f of the form (1), k ∈ [0, ∞) and n ∈ N∗ . Then f ∈
(k, n) − T ∗ if and only if

X

j n (k + 1) − kaj < 1.

j=2

Proof. Let f ∈ (k, n) − T ∗ with k ∈ [0, ∞) and n ∈ N∗ . We have

Re

Dn f (z)
Dn f (z)
>k·
− 1, z ∈ U .
f (z)
f (z)
41

(3)

Mugur Acu and Shigeyoshi Owa - Some subclasses of n-uniformly ...
If we take z ∈ [0, 1), we have (see Remark 1)

P

1−

j n aj z j−1


j=2

P

>k·

1−

j=2

aj z j−1


P

j=2

(j n − 1)aj z j−1


1−


P

(4)

j=2

aj z j−1

From f ∈ (k, n) − T we have (see Theorem 1)



X

aj z

j−1




X

jaj z

j−1

<

and thus


X

jaj ≤ 1

j=2

j=2

j=2


X

aj z j−1 < 1

j=2

or







X
X


j−1
1 −
aj z j−1 .
=
1

a
z
j




j=2
j=2

In this conditions from (4) we obtain
1−


X

n

j aj z

j−1

>k·


X

(j n − 1)aj z j−1 .

j=2

j=2

Letting z → 1− along the real axis we have

X

j n (k + 1) − kaj < 1 .

j=2

Now let f ∈ T for which
relation
(3) hold.
the

Dn f (z)

Dn f (z)
The relation Re f (z) > k f (z) − 1 is equivalent with



D n f (z)


− 1 − Re
k
f (z)

Dn f (z)
− 1 < 1.
f (z)
!

(5)

Using Remark 1 and Theorem 1 we have



D n f (z)


− 1 − Re
k
f (z)





D n f (z)

Dn f (z)


− 1 ≤ (k + 1)
− 1 ≤
f (z)
f (z)
!

42

Mugur Acu and Shigeyoshi Owa - Some subclasses of n-uniformly ...

≤ (k + 1)


P

j=2

(j n − 1)aj |z|j−1

1−


P

j=2

Using (3) we have (k + 1)

≤ (k + 1)

j−1

j=2

(j n − 1)aj

1−

aj |z|


P


P


P

j=2

.
aj

(j n −1)aj

j=2

1−


P

< 1 and thus the condition (5) hold.
aj

j=2

Definition 3.Let f ∈ T , f (z) = z −


P

j=2

aj z j , aj ≥ 0, j = 2, 3, ..., z ∈ U .

We say that f is in the class (k, n) − CCT , k ∈ [0, ∞), n ∈ N∗ , with respect
to the function g ∈ (k, n) − T ∗ , if
Re

Dn f (z)
Dn f (z)
>k·
− 1, z ∈ U.
g(z)
g(z)

Theorem 3.Let k ∈ [0, ∞) and n ∈ N∗ . The function f of the form (1) is
in (k, n)−CCT , with respect to the function g ∈ (k, n)−T ∗ , g(z) = z−


P

j=2

bj ≥ 0, j = 2, 3, ..., if and only if

X

[(k + 1) · |j n aj − bj | + bj ] < 1.

bj z j ,

(6)

j=2

Proof. Let f ∈ (k, n) − CCT , where k ∈ [0, ∞) and n ∈ N∗ , with respect
to the function g ∈ (k, n) − T ∗ . We have
Re

Dn f (z)
Dn f (z)
>k·
− 1, z ∈ U.
g(z)
g(z)

If we take z ∈ [0, 1), we have (see Remark 1)
1−


P

n

j aj z

j=2

P

1−

j=2

j−1

bj z j−1



P

∞ n
j−1

[j aj − bj ] z
j=2


> k ·
P∞

1 − j=2 bj z j−1

From g ∈ (k, n) − T ∗ we have (see Theorem 1)
1−


X

bj z j−1 > 0

j=2

43

(7)

Mugur Acu and Shigeyoshi Owa - Some subclasses of n-uniformly ...
and thus from (7) we obtain
1−


X

j n aj z j−1 > k ·


X

j n aj − bj z j−1 .

j=2

j=2

Letting z → 1− along the real axis we have




X


n
n

j aj > k · (j aj − bj )
1−
j=2

j=2

X

and thus




X

j n aj − bj +


X

j n aj − 1 < 0



P


P
∞ n
From k · j aj − bj +
j n aj − 1 ≤
j=2
j=2

≤k·


X

n

|j aj − bj | +


X

n

j aj − 1 =


X

[k · |j n aj − bj | + j n aj ] − 1

j=2

j=2

j=2

(8)

j=2

j=2

we obtain the condition

X

[k · |j n aj − bj | + j n aj ] < 1

(9)

j=2

which implies (8). It is easy to observe that if (6) hold then the inequality (9)
is true.
Now let take g ∈ (k, n) − T ∗ , where k ∈ [0, ∞), n ∈ N∗ , and f ∈ T for
which the relation (6) hold.
The relation
Dn f (z)
Re
g(z)
is equivalent with

!



D n f (z)



> k
− 1
g(z)





D n f (z)


− 1 − Re
k

g(z)

44

Dn f (z)
−1

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52