ALEL DAN GEN GANDA

ALEL DAN GEN GANDA

  MonoHibrid pada Hewan :

  Warna Rambut Hitam: (gen A):

  However, it is possible to have several

  AA (hitam) x aa (albino) different allele possibilities for one gene.

  Multiple alleles is when there are more than two

  Aa (Hitam) allele possibilities for a gene.

  Gen A:

  1 Kali mutasi : -- >alel a Gen Ganda: Bbrp kali mutasi---) bbrp alel: a1,a2,a3, dst

  • About 30% of the genes in humans are di-allelic, that is they exist in two forms, (they have two alleles)
  • About 70% are mono-allelic, they only exist in one form and they show no variation
  • A very few are poly-allelic having more than two f
  • This is a controlled by a tri-allelic gene
  • It can generate 6 genotypes

  The ABO antigens on the surface of

  • • The alleles control the production of

    the red blood cells

  blood system

  • Two of the alleles are codominant to one another and both are dominant over the third A produces antigen A • Allele I B produces antigen B • Allele I
A L E L G A N D A Pengertian: Gen (virgin) kalau bermutasi membentuk Alel ( A -- a) Banyak Gen mengalami mutasi berulang-ulang, menimbulkan banyak macam alel (lebih dari 2, disebut alel Ganda)

  Contoh: Gen pigmentasi bulu kelinci (Gen C, pigmentasi hitam), memiliki 3 alel:

  1. c : albino (tak ada pigmentasi) ch 2. c : pigmentasi terang, bulu pigmentasi gelap pada ujung (Chinchilla) h 3. c : pigmentasi bagian ujung-ujung tubuh, bagian lain putih (H= himalaya) ch h

  Urutan dominasi alel : C> c > c > c

  Certain types of rabbits… can either be brown, white, have a chinchilla pattern, or

  … have a himalayan pattern

  C causes fully brown coat cc causes albino (white) ch c h causes a chinchilla pattern c causes a Himalayan pattern The alleles are arranged in the following pattern ch h

  > c > cC > c

  Full color rabbit

  • – alleles are dominant to all
    • Himalayan rabbit – color
    • ch h others; CC, Cc , Cc , in certain parts of the body; dominant only to h h h or Cc c; c c or c c

      Chinchilla rabbit

    • – partial
      • Albino rabbit – no color

      defect in pigmentation

    • – allele is recessive to all
    • ch c allele dominant to all other alleles; cc

        Kelinci Gelap: CC, Cc, Cc

        ; cc

        P ; CC x Cch Cch F1 : C Cch x c c F2: Cc

        Cch Ch Cch Ch

        P; Cch Cch X Ch Ch F1: Cch Ch X Cch Ch F2: Cch Cch

        ,c Kelinci Albino: cc

        h

        ; c

        c h c h

        c Kelinci Himalaya:

        ch

        h

        ch

        , c

        ch

        h; c

        ch

        c

        ch

        Kelinci lebih terang; Chinchila: c

        ch

        , C

        Cch c

        Multiple alleles Each gene locus can have more than 2 alleles. An allele may be dominant to some alleles but recessive to others. This situation produces more than 2 different phenotypes.

        

      Each individual has 2 alleles present in their cells at any one

      time .

        BB or Bb or

        l

        Bb

        l

        bb or bb

        l l In this case both A and B are dominant to O (recessive).

        A and B are codominant (both expressed) So... there are four human blood types

        AA, AO A blood type BB ,BO B blood type AB AB blood type or

        

      OO O blood type

      Genotypes Phenotypes (Blood A A types)

        I A B

        I A

        I A

        I AB B B I i A

        I B

        I B

        Sistem Golongan Darah A-B-O. (K. Landsteiner, 1868

        1943) Gen Asli I (Isoagglutinogen), :

        1. Alelnya : Ia, Ib, I

        2. Urutan dominan: Ia = Ib >i

        Golongan (Fenotip)

        Genotip A Ia Ia atau Ia i B Ib Ib; atau Ib i AB Ia Ib O ii

        Contoh: Gol A x Gol B (Ia Ia; Ia I) x ( Ib Ib; Ib I)

        1. Ia Ia x Ib Ib  AB

        2. Ia Ia x Ib I  AB; A

        3. Ia I x Ib I  AB; B

        4. Ia I x Ib I  AB; A, B, O

        Crossing Over dan Rekombinan

      • • Sometimes in meiosis, homologous chromosomes exchange parts in a

        process called crossing-over.
      • New combinations are obtained, called the crossover products.

        Structure of Chromosomes chromosomes are identical pairs of

      • Homologous chromosomes.
      • One inherited from mother and one from father sister chromatids joined at the centromere.
      • made up of

        Crossing Over Basics

      • Occurs at One or More Points Along Adjacent Homologues • Points contact each other
      • DNA is Exchanged • Menaikkan var.Genetik

        http://waynesword.palomar.edu/images/cross3.jpg

        

      Recombination During Meiosis

      Recombinant gametes

        Coat-color Eye-color genes genes (homologous pair of Tetrad

      • How crossing over
      • chromosomes in synapsis) leads to genetic 1 Breakage of homologous chromatids recombination 2 Joining of homologous chromatids<
      • Nonsister

        chromatids break Chiasma in two at the same 3 chromosomes at anaphase I Separation of homologous spot

      • The 2 broken
      • 4 Separation of chromatids at chromatids join anaphase II and completion of meiosis Parental type of chromosome together in a new Recombinant chromosome Recombinant chromosome way Parental type of chromosome

          Coat-color Eye-color genes genes Tetrad

        • A segment of one
        • (homologous pair of chromosomes in synapsis) chromatid has 1 Breakage of homologous chromatids changed places with the equivalent 2 Joining of homologous chromatids segment of its Chiasma nonsister homologue 3 chromosomes at anaphase I Separation of homologous<
        • If there were no

          crossing over meiosis could only produce 2 4 anaphase II and completion of meiosis Separation of chromatids at types of gametes Recombinant chromosome Parental type of chromosome Parental type of chromosome Recombinant chromosome

        TEORI PELUANG:

          The Principles of Probability predict the

        • The Principles of probability can be used to

          outcomes of genetic crosses

        • Alleles segregate by complete randomness
        • Similar to a coin flip!

          Genetics &amp; Probability

        • Mendel’s laws:
          • – segregation
          • – independent assortment

          reflect same laws of probability that apply to tossing coins or rolling dice

          50% 100% BB B B Bb B b Determining probability

          Probability &amp; genetics

        • Calculating probability of making a specific gamete is just like calculating the probability in flipping a coin
          • – probability of tossing heads?
          • – probability making a B gamete?

        • Number of times the event is expected

          Number of times it could have happened

        • Probabilitas pedet lahir jantan dari 10 kelahiran ?. Sex rasio 5:5 The probability is 5:10.
        • Or you can express it as a fraction: 5/10. Since it's a fraction, why not reduce it? The probability that you will pick an odd number is 1/2.
        • Probability can also be expressed as a percent...1/2=50% Or as a decimal...1/2=50%=.5

        GENETIKA: PERAMALAN KETURUNAN DENGAN HUKUM PELUANG

          Prinsip dasar: Pemindahan gen dari orang tua kpd keturunannya Berkumpulnya kembali gen-gen dalam sigot

          Aa X Aa Kakek (Aa)

          F1 Org tua: JTN Org tua: (a) BTN: A mis Peluang muncul aa?

          Anak: Aa

          Konsep Peluang

          Analogi pemindahan satu gen (A/a) dari sepasang Gen (Aa) = pelemparan mata uang yang memiliki dua sisi:

          Calculating probability sperm egg 1/2 1/2 offspring = x 1/4 P P PP P p Pp 1/2 1/2 = x 1/4 p p pp p P

          Pp x Pp P p male / sperm P p fem al e / egg s PP Pp

          Pp pp 1/2 1/2 = x 1/4 1/2 1/2 = x 1/4 1/2 +

          Rule of multiplication

        • Chance that 2 or more independent events will occur together
          • – probability that 2 coins tossed at the same time will land heads up

          P 1/2 x 1/2 = 1/4 Pp

           pp

          Pp x Pp

        • – probability of

          p 1/2 x 1/2 = 1/4

          

        Calculating probability in crosses

        Use rule of multiplication to predict crosses

          

        YyRr YyRr

        x

        yyrr

          ?% Yy Yy x Rr Rr x

          

        1/16 yy rr Apply the Rule of Multiplication AABbccDdEEFf x AaBbccDdeeFf AabbccDdEeFF 1/2 AA x AaAa Bb x Bb bb 1/4

           Got it? cc x cc cc

          1

          Try this ! Dd x DdDd 1/2

          1 EE x eeEe Rule of addition

        • Chance that an event can occur 2 or more different ways
          • – sum of the separate probabilities

          Bb x Bb Bb 

        • – probability of

          sperm egg offspring B b Bb 1/4 1/2 x 1/2 = 1/4 1/4 + b B Bb 1/2 1/2 x 1/2 = 1/4

        DASAR TEORI PELUANG

          I. Terjadinga sesuatu yang diinginkan = sesuatu yang diinginkan -------------------------------- keseluruhan kejadian

          P (X) = X/(X+Y) Contoh : P (gambar) = 1/ 1+1 = ½ = 50 %

          P (lahir anak jantan) = lahir jantan/ (lahir JTN + BTN )

        II. Peluang terjadinya 2 persitiwa /lebih yang masing-masing berdiri = ½ = 50 %. sendiri

          P. (X,Y) = P (X) x P (Y) contoh: Peluang dua anak pertama laki-laki P (Kl, LK) = (1/2) x ( ½) = ¼.

          Aplikasi dalam pewarisan sifat

          Contoh: Gen resesif a (Albino) P: Aa x Aa normal normal

          F1. AA : Normal Aa : Normal Aa ; Normal aa : albino (1/4)

          Butawarna : gen resesif c

          X –linked. P: Cc x C- normal normal F1 : CC:

          F, Normal

          Cc:

          F, Normal

          C- : M,

        III. Peluang Terjadinya dua persitiwa /lebih yang saling mempengaruhi

          P ( X atau Y) = P (x) + P (Y) Contoh Pelempran dua mata uang bersama Peluang muncul dua gambar atau 2 huruf = ¼ + ¼ = ½. 2 PENGGUNAAN RUMUS BINOMIUM: (a+b)

          ‘(2G, 2 H)= ? N = 2

          2

          2

          a, b = DUA KEJADIAN YANG TERPISAH

          (a 2ab +b + )

          n = banyaknya kejadian

          2 ab = 2 (1/2) (1/2) = 1/2

          1 1 1 1 2 1 1 3 3 1

          n=3

          1 4 6 4 1

          3 3 2 2 3 Pelemparan 3 mata uang ( n= 3) ; (a+b) = a + 3 a b + 3 ab + b

          

        Penggunaan Rumus Binomium: Peluang pewarisan sifat Albino

          JTN : Aa x BTN Aa

          ¾ Normal ¼ Albino

          Jika suatu perkawinan mempunyai 4 anak ( n = 4) Maka Peluang semua anak normal ?

          4

          4

          3

          2

          2

          3

          4 Rumus (a+b) = a + 4 ab +6a b +4ab +b

          4

          4 Peluang 4 anak normal (a ) = (3/4) = 81/256 Aplikasi lain teori peluang dalam genetika Pada suatu perkawinan: Genotip diketahui, mis : Aa Bb Cc X Aa Bb Cc aa = 1/4 aabbCc bb = ¼ Cc = 1/2

          Peluang (aabbCc) = 1/4x1/4x1/2 = 1/32

          AaBbCcDdEe X AaBbCcDdEe AABbccDdEE ? = 1/2x1/2x1/4x1/2x1/4 = 1/256 Contoh Pada dua sifat : GEN: Dominan dan Resesif

        • mata Merah Dominan thd Putih (M)
        • Kuliut Albino Resesif (a) Genotip Mm Aa X mm Aa Fenotip Aa X Aa

          A A a a AA F1 ??? Aa Aa aa

          = 1/4

          Bagaimana Peluang Gen Sifat tsb diwariskan pada anak anaknya? M = ½ a = ¼ = 1/8

          Mm x mm M m m m Mm

          Y

          X X

          X Fertilisation Possible Offsprings PEJANTAN Father Sex cells

          Meiosis

          INDUK Mother

          XX XY Chance of a Female 50%

          X Y

          X XX

          XY

          X XX

          XY

          The inheritance of Gender

        Penentuan Jenis Kelamin (SEKS)

          

        Summary:

          Males and females have different purposes defined by their gametes Development of sexes is dependent on:

          genes

          hormones environment Sex is flexible in some species

          Mengapa Seks Penting : Kasus Keseimbangan Hormonal,

          penentuan jenis kelamin menjadi tidak sederhana Contoh: PIG betina Awal bunting

          Lahir : Jantan normal Betina : ??? (

          alat kelm + Jantan)

          Testoteron

          Dewasa

          Injeksi hormon betina (

          Progesteron + Estrogen)

          Tetap tidak menunjukkan perilaku betina normal Injeksi hormon jantan (

          Testoteron

          ) Perilaku jantan jelas,

          KASUS KESEIMBANGAN HORMONAL = SEX

          

        Crocodile Sex Determination

        Incubating temperature

          30 o C all female

          32 o C all male

          31 o C 50% female, 50% male http://a.abcnews.com/images/Sports/rt_thailand_ 080514_ssh.jpg

          PENGARUH LINGKUNGAN =

          SEX

          Hasil Analisis Kariotyping: Metode:

          Disusun besar- kecil Besar,bentuk, homolog Urutan: Besar

          —kecil Besar dan kesamaan bentuk

          Letak/bentuk acak Jumlah dapat dihitung

          Manfaat : Penentuan Sex

          Manfaat: Penentuan normal-abnormal

          

        Penentuan Jenis Kelamin (Krom. SEKS)

        Dasar: Kariotyping untuk menentukan seks (X-Y Kromosom) Manfaat : Pre-derterminasi seks (deteksi dan manipulasi seks)

          R I N G K A S A N

          1. MAMALIA : XY ------- Betina : XX Jantan : XY

          2. BELALANG : XO --------- Betina : XX

          tak ada krom Y

          Jantan: XO/ X- ( )

          3. UNGGAS/ BURUNG: ZW--------- Betina ZW atau ZO

          (Ayam)

          Jantan ZZ (burung) atau ZZ

          4. LEBAH : haploid/diploid Betina : 2n : 32 buah Jantan : n : 16 buah

          Catatan : 1,2,3 dasar kromosom seks 1,3 ada perbedaan (berbalikan)

          R I N G K A S A N II

          1. JANTAN Heterogametik:

          a. Mamalia, Manusia : krom Y == JANTAN betina : XX Jantan : X Y

          b. Heminiptera (Kepik, belalang) Betina : XX Jantan : X (tak ada krom Y)

          2. BETINA Heterogametik : burung, Ikan , Kupu

          a. Burung : betina kromosom mirip Y spt manusia betina : ZW : bukan penentu seks yg kuat Jantan: ZZ

          b. Spesies lain (unggas/ayam/itik) : mirip XO Betina : ZO

          Tipe XY : Drosophla, manusia, mamalia Sex Drosophila Manusia Jantan

          2 XY + 6 A

          2 XY + 44 A Betina

          2 XX

          2 XX Contoh : drosophila 6 autosome : bentuk sama

          2 seks kromosom: bentuk beda :XX, XY X batang lurus, Y sedikit bengkok di salah satu ujungnya

          Munculnya kelainan kromosom non disjunction , meiosis ,

          Abnormal : pembt sel kelamin jantan/betina pd drosophila

          X X x XY

          Normal:

          ND Normal

          XX x XY

          XX O X Y

          X X , Y

          XXX XXY XO YO

          XX XY sindrom turner : wanita Kelainan kromosom pada manusia : sindrom klinefelter: pria sindrom down: autosom/mongolisme

          XX X XY ND

          X XY O

          XXY

          XO Klinefelter (47) : Turner (45

          )

        • testis tak berkembang -ovary tak berkembang, tak menstruasi
        • Mandul dll
          • kelj. Mammae tak berkembang baik dll.

          Peran Manusia Drosophila Krom:

          

        X Menentukan sifat wanita Menentukan sifat betina Menentukan kehidupan, YO = lethal Indeks = Jmlh. Kromosome X = X/A Jmlh. pasangan autosom Contoh: Normal BTN 3 AA XX = X/A = 2/2 = 1.0

          JTN 3 AA X Y = X/A = ½ = 0.5 Kesimpulan : X/A &gt; 1 = betina super &lt; 1.0

          Teori indeks kelamin pada drosophila: krn adanya ND Oleh C.B. BRIDGES: faktor penentu seks jantan pada kromosome, betina pada autosome

        • – 0.5 &gt; : interseks &lt; 0.5 = jantan super
        Population Genetics

        • Predicting inheritance in a population

        • mempelajari tingkah laku gen dalam populasi

          (perubahan frekuensi gen)

        • Mekanisme pewarisan sifat pada kelompok ternak

          (populasi), Pada sifat kuantitatif dan kualitatif

        • how often or frequent genes and/or alleles appear in the population

          

        Populasi: Kelompok ternak t.a. bangsa/spesies yang sama, di daerah

          tertentu dimana antara anggota terjadi saling kawin satu dgn yang lain

          Perlu estimasi frekuensi gen (merugikan) bagi generasi mendatang

          Perbedaan Genetika Individu dan Populasi

          INDIVIDU POPULASI 1.banyak tempat/banyak

          1.LINGKUNGAN: 1 lingkungan tempat/1 lingkungan

          Masa panjang, generasi ke

          2.WAKTU: terbatas satu generasi tumpang tindih. generasi

          Gen pool satu sampel

          3. GENOTIP: genetik khas.

          Gen berubah dari generasi Susunan gen tetap ke generasi

          Tak ada variasi/ satu ukuran

          

        Population Genetics

        • Is simply, the study of Mendelian genetics in populations of animals
        • Basic foundation is the Hardy-Weinberg law
        • Usually limited to inheritance of qualitative traits influenced by only a small number of genes
        • • Important to understand why characteristics, desirable

          or not, can be fixed or continue to exhibit variation in natural populations
        • • Principles applied to the design of selection strategies

          to increase the frequencies of desirable genes or elimination of deleterious genes

          KONSEP-KONSEP DASAR : FREK. GEN The study of the change of allele Frek Genotip frequencies, genotype frequencies, and

          Frek. fenotip phenotype frequencies

          

        Konsep Genetik: bahwa setiap indv. mempunyai dua lokus .untuk

        setiap pasang gen Contoh: Sifat Kualitatif (Warna kulit), dikontrol sepasang Gen R-r

          Kemungkinan Genotip: RR, Rr, rr (mis sapi Short Horn) (Fenotip: ?)

          Pendekatan: :

          Frek. Gen (R ) = p; alelnya ( r ) = q Frek gen R = p = juml. Gen R/ juml. Gen (R + r)

          SEBAB SEBAB MODIFIKASI GENETIK Terjadinya modifikasi genetik, perubahan dalam frekuensi gen:

        • Adaptasi agar dpt survive dlm pop
        • Lingkungan berubah
        • Terjadi evolusi Perilaku Gen dalam Populasi: HK. Hardy Weinberg: APAPUN JENIS GENOTIP/FREKUENSI AWAL AKAN TERCAPAI KESEIMBANGAN DARI SATU GENERASI

          KE GERASI BERIKUTNYA

          Syarat Hk. H. Weinberg:

          

        1. Tidak ada kekuatan yang mampu merubah frek.gen (mutasi,

        dll)

        2. Pada pop. Berlaku Hk Mendel

        THE HARDY WEINBERG EQUATION

          Jadi terjadi keseimbangan, maka frek.gen/alel dll dapat ditentukan dalam populasi

          Mis : frek A = p, Frek a = q , maka p + q = 1 Jika terjadi perkw. Acak: Jumlah total: p

          2

          (AA)+2pq (Aa) + q

          2

          (aa)

          Gamet (frek) A (p) a (q)

          A (p) Genotip (frek) AA (p

          2 ) Aa

          (pq) a (q) Genotip Aa Aa

          Only one of the populations below is in genetic equilibrium. Which one? Population sample Genotypes Gene frequencies AA Aa aa A a 100

          50

          0.6

          40

          60

          0.4 100

          0.6

          30

          20

          0.4 100

          20

          0.6

          16

          48

          36

          0.4 100

          0.6

          80

          0.4

          Contoh Perhitungan Frek . Gen/ (Kodominan): Fenotip Merah Roan Putih Genotip RR Rr rr

          Jika diketahui dalam populasi sapi short horn: 900 (merah); 450 (Roan)

          Brp. Frek (RR); Frek (R) ) ?

          dan 150 (putih ) F (RR)) = jml. Indv. RR/ Juml tot indv. = 900/1500 = 0.6 = 60 % F (R ) = jml R/ Total geg

          = (2x900) + (1x450) + (0 x 150)/ 2 (900+450+150)

          : Contoh : DOMINANSI PENUH

          

        Pada pop 100 ekor sapi FH ditemukan 1 sapi berwarna kemerahan

        Brp frekuensi FH yang hitam heterosigot? H = p M = q ; maka frek gen HH + HM + MM = 1

          2

        2 Atau p + 2pq + q = 1 berasal dari ( p + q = 1)

          2 Diketahui q = 0.01 –maka q = 0.1------p = 0.9 2 pq = 2 (0.1) (0.9) = 0.18 Jadi frekuensi hitam heterosigot adalah: 0.18/ 0.99 = + 0.18 ==18 %.

          :

        LATIHAN/ DISKUSI/HOMEWORK

          

        Fenotip Genotip j.indv. j.gen R J. Gen r

          80 Merah RR ???-

          50

          50 Roan Rr ???-

          20 Putih rr ???- 210

          90 Total ???-

          F(R) ) = 210/300 =

        EXAMPLE ALBINISM IN THE INDO. BUFFALO POPULATION

          Frequency of the albino phenotype = 1 in 20 000 or 0.00005

          A = Normal skin pigmentation allele Frequency = p

          Normal allele = A = p = ?

          Albino allele = q = a = Albino (no pigment) allele Frequency = q

          (0.00005) = 0.007 or 7%

          Phenotypes Genotypes Hardy Observed Weinberg frequencies frequencies 2 Normal AA p 0.99995 Normal Aa 2pq 2 Albino aa q 0.00005

          HOW MANY buffalo IN Indonesia/Toraja ARE CARRIERS FOR THE ALBINO ALLELE (Aa)? a allele = 0.007 = q A allele = p But p + q = 1

          Therefore p = 1- q

          = 1

        • – 0.007

          = 0.993 or 99.3% The frequency of heterozygotes (Aa) = 2pq = 2 x 0.993 x 0.007

          = 0.014 or 1.4% What about multiple alleles?

          1 Number

          Number of A

        • Genotype

          1

          1 A

          4

          2 X 4

        • A

          1

          2 A

          41

          41

        • A

          2

          2 A

          84

        • A

          1

          3 A

          25

          25

        • A

          2

          3 A

          88

        • A

          3

          3 A

          32

        • A

          274

        • Total

          1

          ) = ((2 X 4) + 41 + 25)

        • f(A

          ÷ (2 X 274)

        • = (8 +41 + 25)

          ÷ 548

        • = 74

          ÷ 548

        • = 0.135

          SUMMARY

        • Genetic drift

          All can affect the

        • Mutation

          transmission of genes

        • Mating choice

          from generation to generation

        • MigrationNatural selection

          Genetic Equilibrium If none of these factors is operating then the relative proportions of the alleles (the GENE FREQUENCIES) will be constant

          

        Factors causing genotype frequency

        changes

        • Selection = variation in fitness; heritable
        • Mutation = change in DNA of genes
        • Migration = movement of genes across populations
        • Recombination = exchange of gene segments
        • Non-random Mating = mating between neighbors rather than by chance
        • Random Genetic Drift = if populations are small enough, by chance, sampling will result in a different allele frequency from one generation to the next.

          FAKTOR-FAKTOR YG MAMPU MERUBAH KESEIMB. FREK GEN

          1. MUTASI : Gen mpj sifat “dpt bermutasi”, Gen R ____&gt; r

        (frekuensi Gen r meningkat dlm pop).

        Gen-gen terdapat dalam berbagai bentuk sbg alel yang berlainan forward mutation (maju) mengurangi gen tipe liar back mutation (surut) Akibat : menimbulkan polymorfisma : (banyak alel dari gen yg sama) .2 . SELEKSI : Kekuatan besar pengaruhnya terhadap frek alel seleksi buatan

          3. iNBREEDING : Perkawinan Keluarga dan tidak acak , ekspresi gen resesif meningkat

        • Penurunan variabilitas genetik
        • Peningkatan homosigotik

          Manfaat : bagi para breeder Hewan yang mempj persamaan ciri dikawinkan (inbreeding) dihasilkan suatu strain/purebreed yang homogen mempertahankan gen-gen tertentu pd frekuensi tinggi, Prinsip dasar: sementara gen-gen lain dapat dihilangkan (mengekalkan/mempertahankan sifat yang diinginkan)

          AA X AA Aa X Aa aa X aa

          Aa X Aa

          Homosigot AA,AA AA,Aa,Aa,aa aa, aa

          2/4 = 50 %

          AA Aa

          Homosigot

          Aa

          resesif: ¼ Homosigot : 6/8= 75, %

          dan rekombinasi gen: variabilitas meningkat dg perkw. Acak

        (pilihan acak dr gen 2 parent, cenderung memprod.

        Keturunan lebih bervariasi scr genetik), karena:

        4 REPROD. SEXUAL .

        • Adanya pilihan acak sel benih (meiosis)
        • Fenomena rekombinasi gen dalam kromosom

          Adanya berbagai alel dalam pop menentukan variabilitas populasi

          5. MIGRASI : perpindahan gen( ke dalam/keluar pop) Mis . Adanya import ternak sapi perah (frekuensi fenotip/genotip sapi perah meningkat dalam pop) Migrasi penduduk (becana alam/perang) merubah frek gen dari populasi yang asli/yang didatangi.

          6. ARUS GENETIK : random genetic drift Perubahan scr acak frek.gen dari generasi ke generasi oleh teori PELUANG, A a X Aa mis Aa --peluang teoritis sama mewaris pada keturunan , tetapi mungkin A&gt;a, sehingga pop kearah frek ttt.