Paper16-Acta25-2011. 104KB Jun 04 2011 12:03:15 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 25/2011
pp. 189-194

UNIVALENCE CRITERIONS FOR SOME INTEGRAL OPERATORS

Virgil Pescar, Daniel Breaz
Abstract. We consider the integral operators D|α| , G|α|,γ , Kα1 ,α2 ,...,αn ,|γ|,n and
for the functions f ∈ A we obtain sufficient conditions for univalence of these integral
operators.
2000 Mathematics Subject Classification: 30C45.
Keywords: Integral operator, univalence.
1. Introduction
Let A be the class of functions f of the form
f (z) = z +


X


ak z k ,

k=2

which are analityc in the open unit disk U = {z ∈ C : |z| < 1} . Let S denote the
subclass of A consisting of all univalent functions f in U.
For f ∈ A, the integral operator D|α| is defined by


D|α| (z) = |α|

Zz
0



u|α|−1 f ′ (u) du

1
|α|


(1.1)

,

for some complex numbers α (α 6= 0).
Also, the integral operator G|α|,γ for f ∈ A is given by


G|α|,γ (z) = |α|

Zz

u|α|−1

0

α, γ be complex numbers (α 6= 0).

189




h (u)
u





du

1
|α|

,

(1.2)

V. Pescar, D. Breaz - Univalence criterions for some integral operators


The integral operator Kα1 ,α2 ,...,αn ,|γ|,n is defined by


Kα1 ,α2 ,...,αn ,|γ|,n (z) = |γ|

Zz

u|γ|−1

0



f1 (u)
u



1

α1

...



fn (u)
u



1
αn


for some complex numbers γ, α1 , ..., αn , γ 6= 0; αj 6= 0; j = 1, n .
We need the following lemmas.




1
|γ|

du

Lemma. 1.1. [2]. Let β be a complex number, Reβ > 0 and f ∈ A.
If


1 − |z|2β zf ′′ (z)


≤ 1,



f (z)
β

(1.3)


(1.4)

for all z ∈ U, then the function



Fβ (z) = β

Zz

1

β

u

β−1 ′

0


is regular and univalent in U.

f (u) du

(1.5)

Lemma 1.2. (Schwarz [1]). Let f be the function regular in the disk UR =
{z ∈ C : |z| < R} with |f (z)| < M , M fixed. If f (z) has in z = 0 one zero with
multiply ≥ m, then
M
|z|m , (z ∈ UR ) ,
m
R
the equality (in the inequality (1.6) for z 6= 0) can hold only if
|f (z)| ≤

f (z) = eiθ

(1.6)


M m
z ,
Rm

where θ is constant.
2. Main results
Theorem 1.Let α be a complex number, Reα > 0 and f ∈ A, f (z) = z + a2 z 2 +
....
190

V. Pescar, D. Breaz - Univalence criterions for some integral operators

If
1 − |z|2Reα
Reα

′′

zf (z)



f ′ (z) ≤ 1,

for all z ∈ U, then the function


D|α| (z) = |α|

is in the class S.

Zz
0

(2.1)



1
|α|


u|α|−1 f ′ (u) du

(2.2)

2x

Proof. Let us consider the function ϕ : (0, ∞) → R, ϕ(x) = 1−a
x , 0 < a < 1.
The function ϕ is decreasing and hence, since |α| ≥ Reα > 0, we obtain
1 − |z|2|α|
1 − |z|2Reα

, (z ∈ U) .
|α|
Reα

(2.3)

From (2.3) we have


1 − |z|2|α| zf ′′ (z) 1 − |z|2Reα
f ′ (z) ≤
|α|
Reα

for all z ∈ U. Using (2.1) and (2.4) we get
1 − |z|2|α|
|α|

′′

zf (z)


f ′ (z) ,

′′

zf (z)


f ′ (z) ≤ 1.

(2.4)

(2.5)

From (2.5) and by Lemma 1.1, for β = |α| it results that the function D|α| is in
the class S.
Theorem 2.Let α, γ be complex numbers, Reα > 0, γ 6= 0 and the function
h ∈ A. If


2Reα+1
zh (z)
(2Reα + 1) 2Reα


,
h (z) − 1 ≤
2 |γ|

(2.6)

for all z ∈ U, then the function



G|α|,γ (z) = |α|

Zz

u|α|−1

0

191



h (u)
u





du

1
|α|

(2.7)

V. Pescar, D. Breaz - Univalence criterions for some integral operators

is in the class S.
Proof. Let us consider the function
p (z) =

Zz 

h (u)
u

0



du,

(2.8)

which is regular in U.
We have
 ′

zh (z)
zp′′ (z)

− 1 , (z ∈ U) .
p′ (z)
h (z)

(2.9)



(z)
The function g(z) = zh
h(z) − 1, z ∈ U is regular in U, g(0) = 0 and from (2.6),
by Lemma 1.2, we obtain



2Reα+1
zh (z)
(2Reα + 1) 2Reα


|z| ,
h (z) − 1 ≤
2 |γ|

(2.10)

for all z ∈ U.
From (2.9) and (2.10) we get
1 − |z|2Reα
Reα
for all z ∈ U.
Since
max
|z| 0, j = 1, n, Mj
positive real numbers and fj ∈ A, fj (z) = z + a2 z 2 + ..., j = 1, n.
If


zfj (z)



≤ Mj , z ∈ U; j = 1, n
(2.14)

1
fj (z)

and

M1
M2
Mn
(2Reγ + 1)
+
+ ... +

|α1 | |α2 |
|αn |
2

2Reγ+1
2Reγ

(2.15)

,

then the function


Kα1 ,α2 ,...,αn ,|γ|,n (z) = |γ|

Zz

u|γ|−1

0



f1 (u)
u



1
α1

...



fn (u)
u

is in the class S.



1
αn



du

1
|γ|

(2.16)

Proof. We consider the function
g (z) =
and we observe that g(0) =
We have

Zz 

0

g (0)

f1 (u)
u



1
α1

...



fn (u)
u



1
αn

du

(2.17)

− 1 = 0.



n 
zg ′′ (z) X 1 zfj′ (z)
=
− 1 , (z ∈ U).
p (z) = ′
g (z)
αj fj (z)

(2.18)

j=1

From (2.14), (2.18), by Lemma 1.2., we obtain
′′

n
X
zg (z)
Mj

≤ |z|
, (z ∈ U)
g ′ (z)
|αj |
j=1

193

(2.19)

V. Pescar, D. Breaz - Univalence criterions for some integral operators

and hence, we get
1 − |z|2Reγ
Reγ
Since
max
|z|

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52