Paper-11-Acta24.2010. 111KB Jun 04 2011 12:03:09 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 24/2010
pp. 109-118

ON RICCI η-RECURRENT (LCS)N -MANIFOLDS

D.G. Prakasha

Abstract. The object of the present paper is to study (LCS)n -manifolds with ηrecurrent Ricci tensor. Several interesting results on (LCS)n -manifolds are obtained.
Also the existence of such a manifold is ensured by a non-trivial example.

2000Mathematics Subject Classification: 53C15, 53C25.

Keywords and Phrases: (LCS)n -manifold, η-parallel Ricci tensor, η-recurrent
Ricci tensor.
1. Introduction
In 2003, A.A. Shaikh [6] introduced the notion of Lorentzian concircular structure manifolds (briefly (LCS)n -manifolds) with an example. An n-dimensional
Lorentzian manifold M is a smooth connected paracompact Hausdorff manifold
with a Lorentzian metric g of type (0, 2) such that for each point p ∈ M , the tensor

gp : Tp M ×Tp M → R is a non-degenerate inner product of signature (−, +, +, ..., +),
where Tp M denotes the tangent vector space of M at p and R is the real number
space. A non-zero vector v ∈ Tp M is said to be timelike (resp. non-spacelike, null,
spacelike) if it satisfies gp (v, v) < 0 (resp. ≤ 0, = 0, > 0) [1,4].
Recently, A.A. Shaikh and K.K. Baishya [7] introduced the notion of LP-Sasakian
manifolds with η-recurrent Ricci tensor which generalizes the notion of η-parallel
Ricci tensor introduced by M. Kon [2] for a Sasakian manifold.

109

D.G. Prakasha - On Ricci η-recurrent (LCS)n -manifolds

In this paper we introduce the same notion on (LCS)n -manifolds and give a
non-trivial example. The paper is organized as follows: Section 2 is concerned
about basic identities of (LCS)n -manifolds. After section 2, in section 3 we study
Ricci η-recurrent (LCS)n -manifolds and prove that in such a manifold if the scalar
curvature is constant, then the characteristic vector field ξ and the vector field ρ1
associated to the 1-form A are co-directional. Since the notion of Ricci η-recurrency
is the generalization of Ricci η-parallelity, does there exist a (LCS)n -manifold with ηrecurrent but not η-parallel? For this natural question we give a non-trivial example
in the last section.

2.Preliminaries
Let M n be a Lorentzian manifold admitting a unit time like concircular vector field
ξ, called the characteristic vector field of the manifold. Then we have
g(ξ, ξ) = −1.

(1)

Since ξ is a unit concircular vector field, there exists a non-zero 1-form η such that
for
g(X, ξ) = η(X)

(2)

the equation of the following form holds
(∇X η)(Y ) = α{g(X, Y ) + η(X)η(Y )} (α 6= 0)

(3)

for all vector fields X, Y where ∇ denotes the operator of covariant differentiation
with respect to the Lorentzian metric g and α is a non-zero scalar function satisfies

∇X α = (Xα) = α(X) = ρη(X),

(4)

where ρ being a certain scalar function. By virtue of (2), (3) and (4), it follows that
(Xρ) = dρ(X) = βη(X),

(5)

where β = −(ξρ) is a scalar function. Next if we put
φX =

1
∇X ξ.
α

(6)

Then from (3) and (6) we have
φX = X + η(X)ξ,

110

(7)

D.G. Prakasha - On Ricci η-recurrent (LCS)n -manifolds

from which it follows that φ is symmetric (1, 1) tensor and is called the structure
tensor of the manifold. Thus the Lorentzian manifold M together with the unit
timelike concircular vector field ξ, its associated 1-form η and (1, 1) tensor field φ
is said to be a Lorentzian concircular structure manifold (briefy (LCS)n - manifold)
[6]. Especially, if we take α = 1, then we can obtain the LP-Sasakian structure of
Matsumoto [3]. In a (LCS)n -manifold, the following relations hold:[5, 6]
a)η(ξ) = −1, b)φξ = 0, c)η ◦ φ = 0,

(8)

g(φX, φY ) = g(X, Y ) + η(X)η(Y ),

(9)


(∇X φ)(Y ) = α[g(X, Y )ξ + η(Y )X + 2η(X)η(Y )ξ],
2

η(R(X, Y )Z) = (α − ρ)[g(Y, Z)X − g(X, Z)Y ],
2

S(X, ξ) = (n − 1)(α − ρ)η(X),

(10)
(11)
(12)

2

R(X, Y )ξ = (α − ρ)[η(Y )X − η(X)Y ],
2

S(φX, φY ) = S(X, Y ) + (n − 1)(α − ρ)η(X)η(Y ),

(13)

(14)

for all vector fields X, Y , Z, where R, S denote respectively the curvature tensor
and the Ricci tensor of the manifold.
Definition 1: The Ricci tensor of an (LCS)n -manifold is said to be η-recurrent
if its Ricci tensor satisfies the following:
(∇X S)(φY, φZ) = A(X)S(φY, φZ)

(15)

for all X, Y, Z where A(X) = g(X, ρ1 ), ρ1 is the associated vector field of the 1-form
A. In particular, if the 1-form A vanishes then the Ricci tensor of the (LCS)n manifold is said to be η-parallel and this notion for Sasakian manifolds was first
introduced by Kon [2].
3.Ricci η-recurrent (LCS)n -manifolds
Let us consider a Ricci η-recurrent (LCS)n -manifold. From which it follows that
∇Z S(φX, φY ) − S(∇Z φX, φY ) − S(φX, ∇Z φY ) = A(Z)S(φX, φY ).

(16)

In view of (3), (4), (8), (10), (12) and (14), it can be easily seen that

(∇Z S)(X, Y ) − α[S(φY, Z)η(X) + S(φX, Z)η(Y )]
+(n − 1)[(2αρ − β)η(X)η(Y )η(Z)
+α(α2 − ρ){g(Y, Z)η(X) + g(X, Z)η(Y ) + 2η(X)η(Y )η(Z)}]
= A(Z)[S(X, Y ) + (n − 1)(α2 − ρ)η(X)η(Y )].
111

(17)

D.G. Prakasha - On Ricci η-recurrent (LCS)n -manifolds

It follows that
(∇Z S)(X, Y ) = α[S(φY, Z)η(X) + S(φX, Z)η(Y )]

(18)

−(n − 1)[(2αρ − β)η(X)η(Y )η(Z)
+α(α2 − ρ){g(Y, Z)η(X) + g(X, Z)η(Y )
+2η(X)η(Y )η(Z)}] + A(Z)[S(X, Y )
+(n − 1)(α2 − ρ)η(X)η(Y )].
Hence we can state the following:

Theorem 1. In a (LCS)n -manifold M n , the Ricci tensor is η-recurrent if and
only if (18) holds.
Let {ei , i = 1, 2, ..., n} be an orthonormal frame field at any point of the manifold.
then by contracting over Y and Z in (18) we get
dr(X) = (n − 1)(2αρ − β)η(X) + A(X)[r − (n − 1)(α2 − ρ)].

(19)

If the manifold has constant scalar curvature r, then from (19) we have
(n − 1)(2αρ − β)η(X) = A(X)[(n − 1)(α2 − ρ) − r].

(20)

For X = ξ, the relation (20) yields
(n − 1)(2αρ − β) = η(ρ1 )[r − (n − 1)(α2 − ρ)].

(21)

In view of (20) and (21) we obtain
A(X) = η(X)η(ρ1 ).


(22)

This leads to the following:
Theorem 2. In a Ricci η-recurrent (LCS)n -manifold M n if the scalar curvature
r is constant, then the characteristic vector field ξ and the vector field ρ1 associated
to the 1-form A are co-directional and the 1-form A is given by (22).
Again contracting over X and Z in (18) we obtain
1
dr(X) = αµη(Y ) + (n − 1)[(2αρ − β)η(Y )
2
−(n − 1)α(α2 − ρ)η(Y )] + (n − 1)(α2 − ρ)η(Y )η(ρ1 ) + S(Y, ρ1 ),
112

(23)

D.G. Prakasha - On Ricci η-recurrent (LCS)n -manifolds

where µ = T r.(Qφ) =


Pn

i=1 ǫi S(φei , ei ).

By comparing (19) and (23) we have

1
1
(n − 1)(2αρ − β)η(Y ) + A(Y )[r − (n − 1)(α2 − ρ)].
2
2
= αµη(Y ) + (n − 1)[(2αρ − β)η(Y ) − (n − 1)α(α2 − ρ)η(Y )]

(24)

+(n − 1)(α2 − ρ)η(Y )η(ρ1 ) + S(Y, ρ1 ).
Taking Y = ξ in (24) and using(8(a)), we get

=


1
(n − 1)(2αρ − β) + αµ − (n − 1)2 α(α62 − ρ)
2
1
[(n − 1)(α2 − ρ) − r]η(ρ1 ).
2

(25)

Considering (25) in (24) we have
S(Y, ρ1 ) =

1
[r − (n − 1)(α2 − ρ)]g(Y, ρ1 )
2
1
+ [r − 3(n − 1)(α2 − ρ1 )]η(Y )η(ρ1 ).
2

(26)

Thus we have the following result:
Theorem 3. If the Ricci tensor of an (LCS)n -manifold (M n , g)(n > 3) is ηrecurrent, then its Ricci tensor along the associated vector field of the 1-form is given
by (26).
Substituting Y by φY in (26) we obtain by virtue of (8) that
1
S(φY, ρ1 ) = [r − (n − 1)(α2 − ρ)]g(φY, ρ1 )
2

(27)

By virtue of Qφ = φQ and the symmetry of φ we get from (27) that
S(Y, L) = kg(Y, L),

(28)

where L = φρ1 and k = 12 [r − (n − 1)(α2 − ρ)].
From (28) we can state the following:
Theorem 4.If the Ricci tensor of an (LCS) − n-manifold (M n , g)(n > 3) is
η-recurrent, then k = 12 [r − (n − 1)(α2 − ρ)] is an Eigen value of the Ricci tensor
corresponding to the Eigen vector φρ1 defined by g(X, L) = D(X) = g(X, φρ1 ).

113

D.G. Prakasha - On Ricci η-recurrent (LCS)n -manifolds

4.Existence of Ricci η-recurrent (LCS)n -manifolds
In this section, first we construct an example of (LCS)n -manifold with global
vector fields whose Ricci tensor is η-parallel.
Example 1: We consider a 3-dimensional manifold M = {(x, y, z) ∈ R3 },
where (x, y, z) are the standard coordinates in R3 . Let {E1 , E2 , E3 , E4 } be linearly
independent global frame on M given by






E1 = z x
+y
, E2 = z , E3 =
.
∂x
∂y
∂y
∂z
Let g be the Lorentzian metric defined by g(E1 , E3 ) = g(E2 , E3 ) = g(E1 , E2 ) = 0
and g(E1 , E1 ) = g(E2 , E2 ) = 1, g(E3 , E3 ) = −1.
Let η be the 1-form defined by η(U ) = g(U, E3 ) for any U ∈ χ(M ). Let φ be
the (1, 1) tensor field defined by φE1 = E1 , φE2 = E2 , φE3 = 0. Then using the
linearity of φ and g we have η(E3 ) = −1, φ2 U = U + η(U )E3 and g(φU, φW ) =
g(U, W ) + η(U )η(W ) for any U, W ∈ χ(M ). Thus for E3 = ξ, (φ, ξ, η, g) defines a
Lorentzian paracontact structure on M .
Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g and
R be the curvature tensor of g. Then we have
1
1
[E1 , E3 ] = − E1 , [E2 , E3 ] = − E2 .
z
z
Taking E3 = ξ and using Koszula formula for the Lorentzian metric g, we can easily
calculate
1
1
∇E1 E3 = − E1 , ∇E3 E3 = 0, ∇E2 E3 = − E2 ,
z
z
1
∇E1 E1 = − E3 , ∇E1 E2 = 0, ∇E2 E1 = zE2 ,
z
1
∇E2 E2 = − E3 − zE1 , ∇E3 E2 = 0, ∇E3 E1 = 0.
z
From the above it can be easily seen that (φ, ξ, η, g) is a (LCS)3 structure on M .
Consequently M 3 (φ, ξ, η, g) is a (LCS)3 -manifold with α = − z1 6= 0 and ρ = − z12 .
Using the above relations, we can easily calculate the non-vanishing components
of the curvature tensor as follows:
2
2
R(E1 , E3 )E1 = − 2 E3 , R(E1 , E3 )E3 = − 2 E1 ,
z
z
1
1
2
R(E1 , E2 )E2 =
E1 − z E1 , R(E1 , E2 )E1 = z 2 E2 − 2 E2 ,
z2
z
2
2
R(E2 , E3 )E2 = − 2 E3 , R(E2 , E3 )E3 = − 2 E2
z
z
[E1 , E2 ] = −zE2 ,

114

D.G. Prakasha - On Ricci η-recurrent (LCS)n -manifolds

and the components which can be obtained from these by the symmetry properties
from which, we can easily calculate the non-vanishing components of the Ricci tensor
S as follows:




1
4
1
2
2
S(E1 , E1 ) = − z + 2 , S(E2 , E2 ) = − z + 2 , S(E3 , E3 ) = − 2 .
z
z
z
Since {E1 , E2 , E3 } forms a basis, any vector field X, Y ∈ χ(M ) can be written as
X = a1 E1 + b1 E2 + c1 E3 and Y = a2 E1 + b2 E2 + c2 E3 ,
where ai , bi , ci ∈ R+ (the set of all positive real numbers), i = 1, 2. This implies that
φX = a1 E1 + b1 E2 and φY = a2 E1 + b2 E2 .
Hence


1
S(φX, φY ) = (a1 a2 + b1 b2 ) z 2 + 2 6= 0.
z
By the virtue of the above we have the following:
(∇Ei S)(φX, φY ) = 0

for i = 1, 2, 3.

This implies that the manifold under consideration is an (LCS)3 -manifold with ηparallel Ricci tensor. This leads to the following:
Theorem 5. There exists a (LCS)3 -manifold (M 3 , g) with η-parallel Ricci tensor.

Now we construct an example of (LCS)n -manifolds with η-recurrent but not
η-parallel Ricci tensor.
Example 2: We consider a 3-dimensional manifold M = {(x, y, z) ∈ R3 }, where
(x, y, z) are the standard coordinates in R3 . Let {E1 , E2 , E3 } be linearly independent
global frame on M given by
E1 = ez


,
∂x

E2 = ez−ax

where a is non-zero constant.
115


,
∂y

E3 = ez


,
∂z

D.G. Prakasha - On Ricci η-recurrent (LCS)n -manifolds

Let g be the Lorentzian metric defined by g(E1 , E3 ) = g(E2 , E3 ) = g(E1 , E2 ) = 0,
g(E1 , E1 ) = g(E2 , E2 ) = 1, g(E3 , E3 ) = −1. Let η be the 1-form defined by η(U ) =
g(U, E3 ) for any U ∈ χ(M ). let φ be the (1, 1) tensor field defined by φE1 = −E1 ,
φE2 = −E2 , φE3 = 0. then using the linearity of φ and g we have η(E3 ) = −1,
φ2 U = U + η(U )E3 and g(φU, φW ) = g(U, W ) + η(U )η(W ) for any U, W ∈ χ(M ).
Thus for E3 = ξ, (φ, ξ, η, g) defines a Lorentzian paracontact structure on M .
Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g and
R be the curvature tensor of g. Then we have
[E1 , E2 ] = −aez E2 ,

[E1 , E3 ] = −ez E1 ,

[E2 , E3 ] = −ez E2 .

Taking E3 = ξ and using Koszula formula for the Lorentzian metric g, we can easily
calculate
∇E1 E3 = −ez E1 ,
z

∇E2 E3 = −e E2 ,
∇E3 E3 = 0,

∇E1 E1 = ez E3 ,
∇E3 E2 = 0,

∇E1 E2 = 0,

∇E2 E1 = aez E2 ,

∇E1 E2 = −aez E1 + ez E3 ,

∇E3 E1 = 0.

From the above it can be easily seen that (φ, ξ, η, g) is a (LCS)3 structure on M .
Consequently M 3 (φ, ξ, η, g) is a (LCS)3 -manifold with α = ez 6= 0 such that (Xα) =
ρη(X), where ρ = 2e2z . Using the above relations, we can easily calculate the nonvanishing components of the curvature tensor as follows:
R(E2 , E3 )E3 = −e2z E2 ,

R(E1 , E3 )E3 = −e2z E1 ,

R(E1 , E2 )E2 = −(1 + a2 )e2z E1 ,
R(E1 , E3 )E1 = e2z E3 ,

R(E2 , E3 )E2 = e2z E3 ,

R(E1 , E2 )E1 = (1 + a2 )e2z E2 .

and the components which can be obtained from these by the symmetry properties
from which, we can easily calculate the non-vanishing components of the Ricci tensor
S as follows:
S(E1 , E1 ) = −(2 + a2 )e2z ,

S(E2 , E2 ) = −(2 + a2 )e2z ,

S(E3 , E3 ) = −2e2z .

Since {E1 , E2 , E3 } forms a basis, any vector field X, Y ∈ χ(M ) can be written as
X = a1 E1 + b1 E2 + c1 E3 and Y = a2 E1 + b2 E2 + c2 E3 ,
where ai , bi , ci ∈ R+ (the set of all positive real numbers), i = 1, 2. This implies that
φX = −a1 E1 − b1 E2 and φY = −a2 E1 − b2 E2 .
Hence
S(φX, φY ) = −(a1 a2 + b1 b2 )(2 + a2 )e2z 6= 0.
116

D.G. Prakasha - On Ricci η-recurrent (LCS)n -manifolds

By the virtue of the above we have the following:
(∇E1 S)(φX, φY ) = −a1 b2 (2a + a3 )e2z
(∇E2 S)(φX, φY ) = (a1 b2 + a2 b1 )(2 + a2 )e2z
(∇E3 S)(φX, φY ) = 0.
Let us now consider the 1-forms
(a1 b2 )
a,
(a1 a2 + b1 b2 )
(a1 b2 + a2 b1 )
A(E2 ) = −
,
(a1 a2 + b1 b2 )
A(E3 ) = 0,

A(E1 ) =

at any point p ∈ M . In our M 3 , (15) reduces with these 1-forms to the following
equation:
(∇Ei S)(φX, φY ) = A(Ei )S(φX, φY ),

i = 1, 2, 3.

This implies that the manifold under consideration is an (LCS)3 -manifold with ηrecurrent but not η-parallel Ricci tensor. This leads to the following:
Theorem 6.There exists a (LCS)3 -manifold (M 3 , g) with η-recurrent but not
η-parallel Ricci tensor.
Acknowledgement: The author is thankful to Prof.C.S. Bagewadi for his valuable suggestions in improving the paper.

References
[1] J.K.Beem and P.E.Ehrlich, Global Lorentzian Geometry, Marcel Dekker,
New York, 1981.
[2] M.Kon, Invariant submanifolds in Sasakian manifolds, Mathematische Annalen, 219 (1976), 277-290.
[3] K.Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ.
Natur. Sci. 12(2) (1989), 151-156.
[4] B. O’ Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.
[5] D.G. Prakasha, On generalized recurrent (LCS)n -manifolds, J. Tensor Soc.,
4, (2010), 33-40.
117

D.G. Prakasha - On Ricci η-recurrent (LCS)n -manifolds

[6] A.A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of
the concircular type, Kyungpook Math.J., 43, 2, (2003), 305-314.
[7] A.A. Shaikh and K.K. Baishya, Some results on LP-Sasakian manifolds, Bull.
Math. Soc. Sci. Math. Rommanie Tome 49, 97, 2, (2006), 197-205.
D.G. Prakasha
Department of Mathematics
Karnatak University
Dharwad-580 003, INDIA.
email:prakashadg@gmail.com

118

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52