article05_6. 208KB Jun 04 2011 12:06:52 AM

Journal de Th´eorie des Nombres
de Bordeaux 18 (2006), 73–87

On the number of prime factors of summands of
partitions
´
¨
´cile DARTYGE, Andra
´s SARK
´ly SZALAY
par Ce
OZY
et Miha
´sume
´. Nous pr´esentons plusieurs r´esultats sur le nombre de
Re
facteurs premiers des parts d’une partition d’un entier. Nous
´etudions la parit´e, les ordres extr´emaux et nous d´emontrons un
th´eor`eme analogue au th´eor`eme de Hardy-Ramanujan. Ces r´esultats montrent que pour presque toutes les partitions d’un entier,
la suite des parts v´erifie des propri´et´es arithm´etiques similaires `a
la suite des entiers naturels.

Abstract. We present various results on the number of prime
factors of the parts of a partition of an integer. We study the
parity of this number, the extremal orders and we prove a HardyRamanujan type theorem. These results show that for almost all
partitions of an integer the sequence of the parts satisfies similar
arithmetic properties as the sequence of natural numbers.

1. Introduction
The aim of this paper is to study the number of prime factors of parts
of partitions of n. For n ∈ N denote the set of all partitions of n by P(n)
and the cardinality of P(n) by p(n).
For a partition γ = (γ1 , . . . , γs ) of n = γ1 +· · ·+γs with γ1 > . . . > γs > 1,
s(γ) := s denotes the number of the parts of γ. We will also use the
standard notations ω(n) for the number of distinct prime factors of n and
Ω(n) for the number of prime factors of n counted with multiplicity.
The first result is a Hardy-Ramanujan type theorem.
Theorem 1.1. Let Φ be a non-decreasing function with limN →∞ Φ(N ) =
+∞. For n → ∞, for all but o(p(n)) partitions of n the number of parts γj
with
p
(1.1)

|ω(γj ) − log log n| > Φ(n) log log n

is o( n log n).
Manuscrit re¸cu le 31 mars 2004.
Research partially supported by the Hungarian National Foundation for Scientific Research,
´ exchange program Balaton F-2/03.
Grant T043623 and by French-Hungarian EGIDE-OMKFHA

´rko
¨ zy, Mih´
C´ecile Dartyge, Andr´
a s Sa
aly Szalay

74

The main tool of the proof of this theorem is a mean value theorem from
[DSS] related to arithmetic progressions. We will also study the maximum
of the Ω and ω functions over the parts of a partition.
Proposition 1.2. Let ε > 0. Then for n → ∞, for almost all partitions

γ ∈ P(n) we have
log n
log n
(1.2)
6 max Ω(γj ) 6 (1 + ε)
(1 − ε)
2 log 2 16j6s(γ)
2 log 2
and
(1.3)

(1 − ε)

log n
log n
6 max ω(γj ) 6 (1 + ε)
.
2 log log n 16j6s(γ)
2 log log n


Finally, we will show that in almost all partitions γ of n, about half of
the parts have even and half of them odd number of prime factors, i. e.,
the Liouville function λ(N ) = (−1)Ω(N ) assumes the values +1 and −1
with about the same frequency over the parts γ1 , . . ., γs . Let s0 = s0 (γ)
and s1 = s1 (γ) denote the number of parts with even, resp. odd number of
prime factors in the partition γ.
Theorem 1.3. If f (n) → ∞ and f (n) = o(log n), then for almost all
partitions γ of n we have
 f (n) 
s0 (γ)
=1+O
.
(1.4)
s1 (γ)
log n
By (2.1) and Lemma 5.1 below, it is easy to see that√(1.4) is sharp :
for arbitrarily large constant c, there exist√(exp(−2πc/ 6) + o(1))p(n)
partitions
of n containing 1 as summand 2[c n]-times at√least. Omitting


2[c n] of the 1’s and increasing the number of 2’s with [c n] we obtain

s0 (γ) − 2[c n]
c
s0 (γ ′ )
s0 (γ)

=

.
<

s1 (γ )
s1 (γ) log n
s1 (γ) + [c n]
In the next paragraph we will recall some results about s(γ), and the
three other paragraphs are devoted to the proofs of Theorem 1.1, Proposition 1.2 and Theorem 1.3 respectively.
2. On the number of parts of partitions : results of Erd˝
os,
Lehner, Szalay and Tur´

an
In 1941, Erd˝os and Lehner [EL] proved that if f tends to +∞ arbitrarily
slowly then the inequality



6n

s(γ) −
(2.1)
log n 6 nf (n)

holds for almost all partitions of n. Szalay and Tur´an showed a strong form
of this theorem.

On the number of prime factors of summands of partitions

75

Theorem 2.1. (Szalay and Tur´

an, [ST2], Theorem IV, p. 388) If
f (n) tends arbitrarily slowly to +∞ and satisfies f (n) = o(log n) then the
number of partitions with




s(γ) − 6n log n > c1 nf (n)
(2.2)

is at most c2 p(n) exp(−f (n)).
In the proof of Theorem 1.1 we will also need the following result of
Szalay and Tur´
an:
Lemma 2.2. (Szalay
and Tur´
an, [ST3], Lemma 4, p.137) The in√ √
equality s(γ) 6 52π6 n log n holds with the exception of at most O(p(n)n−2 )
partitions γ.
3. Proof of Theorem 1.1

3.1. A mean square value argument.
We define
X
ω ∗ (γj ) :=
1.
p|γj
p 0)
partitions γ of n such that for at least B n log n (B > 0) parts we have
p
|ω(γj ) − log log n| > Φ(n) log log n.
This implies that for n > n0 (Φ) the inequality
|ω ∗ (γj ) − log log n| > |ω(γj ) − log log n| − 10
Φ(n) p
log log n
>
2

holds for at least B n log n parts of these partitions γ. This gives for D :

AB

D>
p(n) n(log n)Φ2 (n) log log n.
4
This contradicts (3.1).

´rko
¨ zy, Mih´
C´ecile Dartyge, Andr´
a s Sa
aly Szalay

76

It remains to prove (3.1). The square in (3.1) is
X

(ω ∗ (γj ) − log log n)2 =
(3.2)
=


1

p|γj
p σD(ξn )) <

1
.
σ2

(5.1) follows from this inequality by Lemma 5.3 and Lemma 5.5, and this
completes the proof of Theorem 1.3.

On the number of prime factors of summands of partitions

87

References
´rko
¨ zy, M. Szalay, On the distribution of the summands of partitions
[DSS] C. Dartyge, A. Sa

in residue classes. Acta Math. Hungar. 109 (2005), 215–237.
˝ s, J. Lehner, The distribution of the number of summands in the partitions of
[EL] P. Erdo
a positive integer. Duke Math. Journal 8 (1941), 335–345.
´n, On some problems of the statistical theory of partitions with
[ST2] M. Szalay, P. Tura
application to characters of the symmetric group II. Acta Math. Acad. Sci. Hungar. 29
(1977), 381–392.
´n, On some problems of the statistical theory of partitions with
[ST3] M. Szalay, P. Tura
application to characters of the symmetric group III. Acta Math. Acad. Sci. Hungar. 32
(1978), 129–155.
eme
[T]
G. Tenenbaum, Introduction `
a la th´
eorie analytique et probabiliste des nombres, 2`
´
edition. Cours sp´
ecialis´
es n◦ 1, Soci´
et´
e math´
ematique de France (1995).

ecile Dartyge
´
Institut Elie
Cartan
Universit´
e Henri Poincar´
e–Nancy 1
BP 239
54506 Vandœuvre Cedex, France
E-mail : [email protected]
´rko
¨ zy, Mih´
Andr´
as Sa
aly Szalay
Department of Algebra and Number Theory

otv¨
os Lor´
and University
H-1117 Budapest

azm´
any P´
eter s´
et´
any 1/C, Hungary
E-mail : [email protected], [email protected]

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52