vol3_p93-102. 145KB Jun 04 2011 12:06:14 AM

The Electronic Journal of Linear Algebra.
A publication of the International Linear Algebra Society.
Volume 3, pp. 93-102, May 1998.
ISSN 1081-3810. http://math.technion.ac.il/iic/ela

ELA

POSITIVE DEFINITENESS OF TRIDIAGONAL MATRICES
VIA THE NUMERICAL RANGE
MAO-TING CHIENy AND MICHAEL NEUMANNz

Dedicated to Hans Schneider on the occasion of his seventieth birthday.

Abstract. The authors use a recent characterization of the numerical range to obtain several
conditions for a symmetric tridiagonal matrix with positive diagonal entries to be positive de nite.
Key words. Positive de nite, tridiagonal matrices, numerical range, spread
AMS subject classi cations. 15A60, 15A57

1. Introduction. In a paper on the question of unicity of best spline approximations for functions having a positive second derivative, Barrow, Chui, Smith, and
Ward proved the following result.
Proposition 1.1. [1, Proposition 1] Let A = (a ) 2 R

be a tridiagonal
n;n

ij

matrix with positive diagonal entries. If


2 
1

a ,1a ,1  4 a a ,1 ,1 1 + 1 + 4n2 ; i = 2; : : :; n;
then det(A) > 0.
Johnson, Neumann, and Tsatsomeros improved Proposition 1.1 as follows.
Proposition 1.2. [6, Proposition 2.5, Theorem 2.4] Let A = (a ) 2 R be a
i;i

i

;i


ii

i

;i

ij

tridiagonal matrix with positive diagonal entries. If

a ,1a ,1 < 41 a a ,1 ,1  1 2 ; i = 2; : : :; n;

cos n +
1
i;i

i

;i


ii

i

;i

then det(A) > 0. In addition, if A is (also) symmetric, then A is positive de nite.

The main purpose of this paper is to derive additional criteria, using the numerical range, for a symmetric tridiagonal matrix A with positive diagonal entries to be
positive de nite. An example of one of our results is Theorem 2.2.
Recall that the numerical range of a matrix A 2 C is the set
W (A) = fx Ax j x 2 C ; jxj = 1g:
n;n

n

Many of our results here will be derived with the aid of the following recent characterization of the numerical range due to Chien.
 Received by the editors on 23 December 1997. Final manuscript accepted on 1 May 1998.
Handling editor: Daniel Hershkowitz.

y Department
of Mathematics, Soochow University, Taipei, Taiwan 11102,
Taiwan (mtchien@math.math.scu.edu.tw). Supported in part by the National Science Council of
the Republic of China.
z Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269{3009, USA
(neumann@math.uconn.edu).
93

ELA
94

Mao-Ting Chien and Michael Neumann

Theorem 1.3. [2, Theorem 1] Let A 2 C

n;n

of C . Then
n


and suppose S be a nonzero subspace

W (A) = [ W (A );
where x and y vary over all unit vectors in S and S ? , respectively, and where
 
Ay 
x
Ax
x
A = y Ax y Ay :
x;y

xy

xy

Our main results are developed in Section 2 which contains several conditions for
a symmetric tridiagonal matrix with positive diagonal entries to be positive de nite.
In Section 3 we give some examples to illustrate di erent criteria we have obtain in
Section 2.

Some notations that we shall employ in this paper are as follows. Firstly, we shall
use e( ) , i = 1; : : :; k, to denote the k{dimensional i{th unit coordinate vector, viz.,
the i{th entry of e( ) is 1 and its remaining entries are 0.
Secondly, for a set  f1; 2; : : :; ng denote by 0 = f1; 2; : : :; ng n its complement
in f1; 2; : : :; ng. Thirdly, if and are subsets of f1; 2; : : :; ng and A 2 C , then
we shall denote by A[ ; ] the submatrix of A that is determined by the rows of
A indexed by and by the columns indexed by . If = , then A[ ; ] will be
abbreviated by A[ ].
2. Main Results. We come now to the main thrust of this paper which is to
develop several criteria for a symmetric tridiagonal matrix with positive diagonal
entries to be positive de nite.
Suppose rst that A is an n  n Hermitian matrix and partition A into


A = BR BT ;
k

i

k


i

n;n

where R and T are square. A well known result due to Haynsworth [4] (see also
[5, Theorem 7.7.6]) is that A is positive de nite if and only if R and the Schur
complement of R in A, given by (A=R) = T , B  R,1B , are positive de nite. For
tridiagonal matrices, we now give a further proof of this fact based on Theorem
1.3 and in the spirit of the divide and conquer algorithm due to Sorensen and Tang
[9], but see also Gu and Eisenstat [3], in the sense that it is possible to reduce the
problem of determining whether A is positive de nite into the problem of, rst of
all, determining whether two smaller principal submatrices of A are positive de nite
which can be executed in parallel.
Theorem 2.1. Let A 2 C be a Hermitian tridiagonal matrix and partition A
n;n

into

2


A =

6
4

A1
a +1 e(
0
k

k )T
;k k

a
a

k;k +1

a


e(

k)

k

k +1;k +1

k +2;k +1

e1( , ,1)
n

k

a

k +1;k


3

0
( , ,1)
+2 e1
A2
n

k

T

7
5;

ELA
95

Positive De niteness of Tridiagonal Matrices


where 1 < k < n, A1 2 C , and A2 2 C , ,1 , ,1. Then A is positive de nite if
and only if the symmetric tridiagonal matrix
k;k



n

(1)

;n

k



A1 0 , (1=a +1 +1) 
0 A2
a
ja +1j2 e( )e( )
a +1 a +2 +1e1( , ,1)e( ) ja
k

"

k

;k

k

k;k

k

;k

k

k

k T

k;k +1

k
n k

k T

;k

k +1;k

k

is positive de nite. Putting

C1 = A1 , jaa

(2)

k;k +1

e e1( , ,1)
, , e( , ,1)
+2 j e1
1

a

(k )
k +1;k +2 k
2 (n k 1)

n

k

n

T

k

#

T

j2 e( ) e( ) ;
k

k +1;k +1

k T

k

k

a necessary and sucient condition for the matrix in (1) to be positive de nite is that
A1 and A2 are positive de nite and that the inequalities

1 , jaa

(3)

k;k +1

j2 ,A,1 
1

k +1;k +1

and

> 0

k;k

!

2
, ,1
j
a
+1a +1 +2 j
A2 1 1 > 0
(4)
(C1,1)
1 , ja +1 +2j +
a +1 +1
hold. In addition, if A1 and A2 are positive de nite, then any one of the following
three conditions is also sucient for A to be positive de nite.


k

2

;k

k;k

k

k;k

k

(i) The matrices

A , ja

(5)

;k

j2 + ja +1
a +1 +1

k;k +1

i

;

;k

k

k

;k +2

j2 I ; i = 1; 2;
i

;k

are positive de nite,

(ii)

1 > a 1
+1

(6)



ja

;k +1

k

k;k +1

,

j2 A,1 1 + ja +1

(iii)

k

k;k

;

j2 + ja +1 +2j2  ;
d1
d +2
+1
where d1 and d +2 are the smallest eigenvalues of of A1 and A2 , respectively.
Proof. Let S be the subspace of C spanned by e( +1) . Then, by Theorem 1.3, A is
positive de nite if and only if A is positive de nite for all x 2 S and y 2 S ? . Assume
now that x = [0 0 : : : 0 x +1 0 : : : 0] 2 S and y = [y1 : : : y 0 y +2 : : : y ] 2 S ? .
1 > a 1
+1

(7)

k



,
 
j2 A2,1 1 1 ;

;k +2

ja

k;k +1

k

;k

;k

k

k

n

n

k

xy

Then

A

xy

t

k

=



a +1
a +1y x +1 + a
k

k;k

k

k

;k +1
k +2;k +1

k

y +2 x
k

k +1

a

k +1;k

x

k +1

k

y + a +1
y Ay
k

k

n

;k +2

t



x +1y
k

k +2

ELA
96

Mao-Ting Chien and Michael Neumann

is positive de nite if and only if
a +1 +1 y Ay
(8)
, (a +1 x +1y + a
> 0:
k

;k

k

;k

k

k

k +1;k +2

x

k +1

y

k +2

) (a

k;k +1

y x
k

k +1

+a

k +2;k +1

)

Put y0 := [y1 : : : y y +2 : : : y ] 2 C ,1. Then (8) becomes


A
0
1
0
0 ,
2
a +1 +1 y
0 A2 y , ja +1j y y + a +1 a +1 +2y y +2

+ a +1 a +1 +2y +2 y + ja +1 +2j2y +2y +2


A
0
1
0
0
= a +1 +1 y
0 A2 y
#
"
( ) ( , ,1)
2 ( ) ( )
j
a
j
e
e
a
a
e
e
+1
+1
+1
+2
1
y0 > 0
, y0
T
a +1 a +2 +1e1( , ,1)e( ) ja +1 +2j2 e1( , ,1)e1( , ,1)
k

k

k

n

t

n

;k

k

k

k;k

;k

k

;k

k

k

k

k

;k

k

k

k

;k

k

;k

k

k

k

;k

k

k;k

k

n

k

;k

k

k T

k

k;k

k
k

k

;k

;k

k

k

n

k

T

k

n

k

k

n

k

T

;k

This proves the rst part of theorem. Namely, that A is positive de nite if and only
if the (n , 1)  (n , 1) matrix in (1) is positive de nite.
The equivalence of the positive de niteness of the matrix in (1) to the conditions
(3) and (4) is obtained by considering the Schur complement of the matrix C1 given
in (2) and by utilizing the fact that if u; v 2 R , then

,
(9)
det I + uv = 1 + v u:
Suppose now that A1 and A2 are positive de nite. We next establish (i). For this
purpose
matrix in (1), which has rank 1, has eigenvalues

, observe that the subtracted
0 and ja +1j2 + ja +1 +2j2 =a +1 +1 so that in the positive semide nite ordering,
`

T

T

k;k



k

k

;k



;k



1

k

;k

ja



j2e e
a +1a +1 +2e e1
, a
a
a
e
e
ja +1 +2j2e1 e1
+1
+2 +1 1
+1 +1


2
2
 A01 A0 2 , ja +1aj + ja +1 +2j I ,1 :
+1 +1
Thus if (5) holds, then A is clearly positive de nite because then a submatrix of A,
namely a , as well as its Schur complement in A given in (1) are positive de nite.
A1 0
0 A2

k

k;k +1

;k

k

k

;k

T
k

k;k

T
k

k;k

k

k

k

;k

;k

k
T

T

;k

n

k

;k

k;k

To establish the validity of (ii), factor the rst matrix in (1) and compute the
determinant of the sum of the identity matrix and the rank 1 matrix using the formula
in (9). A simple inspection shows that condition (6) implies the positivity of that
determinant.
Finally, condition (7) implies ,condition
(6) because, by interlacing
properties of

,

symmetric matrices we have that A,1 1  (1=d1) > 0 and A,2 1 1 1  (1=d +1) >
0. This establishes (iii) and our proof is complete.
Next from Gershgorin theorem we know that a sucient condition for an Hermitian matrix A = (a ) with positive diagonal entries to be positive de nite is that
k;k

i;j

;

k

ELA
97

Positive De niteness of Tridiagonal Matrices

a > P =1 =6 ja j, i = 1; 2; : : :; n. However, what can be said if, for a tridiagonal
matrix, the condition fails to be satis ed for some rows? In this case, we obtain the
following criteria.
Theorem 2.2. Let A = (a ) 2 C
be an Hermitian tridiagonal matrix with
positive diagonal entries. Then A is positive de nite if one of the following conditions
n

i;i

j

;

i;j

i

n;n

i;j

is satis ed.

(i)


i

max a
=1 3
; ;:::

 

, =1min3 a

i;i

i

; ;:::

 

jap+1 j + max jap,1 j 2 < min a :
+ =1
max
=3 5
3
=2 4
a
a
i

i;i

i

; ;:::

i

;i

i

i;i

(ii) =1min
a = =1
max
a , and
3
3
i

ii

; ;:::

i

i

i;i





2 max ja ,1 j2 + ja +1 j2 : i = 1; 3; : : : <
;i

i

;i

i

 

min a
=1 3
; ;:::

ii

i

min a
=2 4
; ;:::

(iii) =1min
a =
6 =1
max
a ,
3
3
i

ii

; ;:::



i

2 =1
max
ja ,1 j2 + ja +1 j2 , =1min3 ja ,1 j2 + ja +1 j2
3

>

i

; ;:::



i

;i

i

;i

i

i;i

; ;:::

i

i

; ;:::

;i

i

i

;i

;i

i

;i



< =1min
a
3
i

; ;:::

 
i;i

i

min a

=2 4

; ;:::

(iv) =1min
a =
6 =1
max
a ,
3
3


i


and



i

; ;:::

i

;i

i

;i

i

i

; ;:::

;i

i

;i

2

max fa g , =1min
fa g ;
3

=1 3

i;i

; ;:::

i

i;i

; ;:::





i



i;i



1 min a , max a 2
=1 3
4 =1 3
2
+ =1
max
ja ,1 j + ja + j2 + =1min3 ja ,1 j2 + ja +1 j2
3
i



i;i

; ;:::

2 =1
max
ja ,1 j2 + ja +1 j2 , =1min3 ja ,1 j2 + ja +1 j2
3
i



i;i

; ;:::


2 max ja ,1 j2 + ja +1 j2 : i = 1; 3; : : :
i;i

; ;:::

; ;:::

i;i

i

i

; ;:::

;i

i

i;i

;i

i

; ;:::

i

;i

i

;i

2 + ja +1 j2 , min =1 3 ja ,1 j2 + ja +1 j2 2
max
j
a
j
1
3
,
1
+
max =1 3 a , min =1 3 a


< =1min
fa g) ( =2min
fa g :
3
4
; ;:::

i

;i

i

i

i

:

max fa g , =1min
fa g ;
3

=1 3



; ;:::

ii

2

and

i



ii

; ;:::

i

; ;:::

ii

; ;:::

i

;i

; ;:::

; ;:::

i;i

i

;i

; ;:::

; ;:::

i;i

i

i;i

; ;:::

i

; ;:::

i

i;i

;i

i

;i

:

i;i

ELA
98

Mao-Ting Chien and Michael Neumann

Proof. We rst note that Bessel's inequality (see, e.g., [7, p.488]) implies that if
x and y are n{vectors which are orthogonal to each other, then
(10)
jx Ayj2  kAxk22 , jx Axj2:
Next let S be the subspace generated by e1 ; e3; e5; : : : and observe that vectors x 2 S
and y 2 S ? have the form x = [x1 0 x3 0 x5   ] and y = [0 y2 0 y4   ] , respectively.
Then by Theorem 1.3, A is positive de nite if and only if A is positive de nite for
x 2 S and y 2 S ? , which is equivalent to
(11)
x Ax y Ay > jx Ayj2 :
Assume now that condition (i) is satis ed. We rst recall the following inequality.
Let p1 ;    ; p be positive numbers. Then for any real numbers q1; q2; : : :; q ,
(12) (q1 + q2 +    + q )=(p1 + p2 +    + p )  maxfq =p : i = 1; 2; : : :; ng
Then by (12) we have that
P
ja x j2
P =1 3 a jx j2  =1
(13)
max
a ;
3
=1 3
and
P
ja +1 x + a +1 +2x +2 j2
=1 3 P
=1 3 a jx j2
sP
sP
!2
j
a +1 x j2
j
a +1 +2x +2 j2
=1
3
=1
3
P
P
+

=1 3 a jx j2
=1 3 a jx j2
s
s
!2
2
2
j
a
j
j
a
j
+1
,
1
+ =3

max a
max
=1 3
5
a


ja +1 j + max ja ,1 j 2 :
= =1
max
(14)
3 pa
=3 5 pa
From (13), (14), and the hypothesis we now obtain,
kAxk22 , jxAxj2
xAx
P
2 P
ja +1 x + a +1 +2 x +2j2 X
j
a
x
j
=1 3 P
=1
3
a jx j2
+
,
= P
=1 3 a jx j2
=1 3 a jx j2
=1 3


2
ja +1 j + max ja ,1 j , min fa g
 =1
max
fa g + =1
max
3
3 pa
=3 5 pa
=1 3
X
< =2min
fa g 
a jy j2 = y Ay:
4
T

T

xy

n

n

n

i

n

i

; ;:::

i

; ;:::

i

; ;:::

i;i

i

;i

;i

i

i

i;i

; ;:::

i

; ;:::

i

; ;:::

i

; ;:::

i

; ;:::

; ;:::

i;i

i

i

i

;i

i

i

i

i

i

; ;:::

;i

i

i

i

i

; ;:::

; ;:::

i

; ;:::

i

;i

i;i

i;i

; ;:::

i

i;i

i

i

i

i

i;i

; ;:::

i

i

i;i

i

i

;i

; ;:::

i;i

;i

i

i

i

;i

i;i

;i

i;i

i

;i

i

i

; ;:::

i

ii

i;i

i

i

i

; ;:::

i

; ;:::

i;i

i

i;i

i

; ;:::

=2 4

; ;:::

;i

i;i

i;i

ii

i

i

i

i

; ;:::

i

; ;:::

;i

i;i

i

; ;:::

i;i

i

ELA
Positive De niteness of Tridiagonal Matrices

99

The result now follows from (11) and (10).
Let us now set 1 := mini=1;3;::: fai;ig; 1 := maxi=1;3;::: fai;ig;
2 := mini=1;3;::: jai,1;ij2 + jai+1;ij2, and 2 := maxi=1;3;::: jai,1;ij2 + jai+1;ij2 . Then
2 , jxAxj2
kAxkX
X
X
=
jai;ixij2 +
jai+1;ixi + ai+1;i+2xi+2 j2 ,
aii jxij2



i=1;3;:::

X

i=1;3;:::

jai;ixij2 ,

i=1;3;:::

X

i=1;3;:::

i=1;3;:::

ai;ijxij2

0s
12
s X
X
+@
jai+1;ij2jxi j2 +
jai+1;i+2j2 jxi+2j2A
i=1;3;:::
i=1;3;:::
2
3
X
X
X
2
2
2
2
2
ai;ijxij + 2 4
(jai,1;ij + jai+1;ij )jxij 5
jai;ixij ,


i=1;3;:::
i=1;3;:::
2
2
2
= t 1 + (1 , t) 1 , [t 1 + (1 , t) 1 ] + 2[t 2 + (1 , t) 2 ]
= t(1 , t)( 1 , 1 )2+ 2(t 2 + (1 , t) 2 ) 
(15) = , ( 1 , 1 )2 t2 + ( 1 , 1 )2 + 2( 2 , 2 ) t + 2 2 ;
i=1;3;:::

for some t 2 [0; 1]. If 1 = 1 then the value of (15) is 2( 2 , 2 )t + 2 2 : If
2 )2 at
1 6= 1 then (15) assumes its maximum 41 ( 1 , 1 )2 + ( 2 + 2 ) + ( 2 ,
1 , 1

,

1
2
2
2
t = 2 + 2( , )2 when 2( 2 , 2)  ( 1 , 1) and assumes it maximum 2 2
1
1
when 2( 2 , 2) > ( 1 , 1)2 : Therefore

81
 
>
2 + ( 2 + 2 ) + , 2 ;
(

,

)
1
1
>
4
,
<
2

2
if

=
6

and
2(

kAxk2 ,jx Axj  >
1
1
2 , 2)  ( 1 , 1 )2;
>
:
2
1

2
1

2 2 ; if 1 = 1 or 1 6= 1 and 2( 2 , 2 ) > ( 1 , 1)2 :
(16)
If one of the conditions (ii), (iii), or (iv) is satis ed, then by (16),

kAxk22 , jxAxj2 < (i=1min
a ) ( min a )  x Ax y Ay:
;3;::: ii i=2;4;::: ii
Thus, by (11) and (10), A is positive de nite.
We remark that a similar result can be obtained by switching the odd and even
indices in statement of theorem and in the proof.
Recall now that for a Hermitian matrix A 2 C n;n with eigenvalues 1  : : :  n ,
the spread of A is 1 , n and is denoted by Sp(A). For references on eigenvalue
spreads, see, e.g., Nylen and Tam [8], and Thompson [10].
Theorem 2.3. Let A = (ai;j ) 2 C n;n be an Hermitian tridiagonal matrix with

ELA
100

Mao-Ting Chien and Michael Neumann

positive diagonal entries. If

i

min fa g
=1 3
; ;:::

 

i;i



i

n(n , 1) X ,ja , a j2 + 4ja j2  ;
min
f
a
g
>
=2 4
8
i;i

; ;:::

i;i

j;j

i;j

i

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52