andrica-piticari3. 111KB Jun 04 2011 12:08:21 AM

ACTA UNIVERSITATIS APULENSIS

No 15/2008

ON SOME INTERESTING TRIGONOMETRIC SUMS

Dorin Andrica and Mihai Piticari

Abstract. We give three different proofs to the identity (2). Some
applications are also presented.
2000 Mathematical Subject Classification: 00-99, 97D50.
1. Introduction
In [3] we proposed the following question: Evaluate the sum
n−1
X
k=0

1
2

1 + 8 sin





n

.

(1)

In the next issue of the journal ”Mathematical Reflexions” no solutions
were given to this problem. The main purpose of this note is to present three
different proofs to the following general result.
Theorem. For any real number a ∈ R \ {−1, 1} the following relation
holds:
n−1
X
n(an + 1)
1
.

(2)
= 2
n − 1)
2kπ
(a

1)(a
2
k=0 a − 2a cos
+1
n
Let us remark that the particular case n = 7 and a ∈ (−1, 1) represents
Problem 49 in the Longlisted Problems of IMO1988 (see [4] page 217).
In the last section we present four applications of our main result.

299

D. Andrica, M. Piticari - On some interesting trigonometric sums
2. Proofs of the theorem
Proof 1. (Dorin Andrica and Mihai Piticari) Let P ∈ R[X] be a polynomial with real coefficients of degree n − 1, P = a0 + a1 X + · · · + an−1 X n−1 .

If α ∈ Un is an nth root of unity, then we have
 
1
2
|P (α)| = P (α) · P (α) = P (α) · P (α) = P (α) · P
α


a1
1
n−1
= (a0 + a1 α + · · · + an−1 α ) a0 +
+ · · · + an−1 n−1
α
α
n−1
n−1
X
X
1

= a20 + a21 + · · · + a2n−1 +
Ak α k +
Bj j ,
α
j=1
k=1
where coefficients Ak , Bj are different from zero. Using the relation (see [2,
Proposition 3, page 46])

X
n, if n|k
k
α =
0, otherwise
α∈Un

we get the following nice formula
X
|P (α)|2 = n(a20 + a21 + · · · + a2n−1 )


(3)

α∈Un

In order to prove (2) we consider the polynomial
P = 1 + aX + · · · + an−1 X n−1 =

an X n − 1
.
aX − 1

Applying formula (3) it follows
X

α∈Un

|P (α)|2 = n(1 + a2 + · · · + a2n−2 ) = n

a2n − 1
a2 − 1


On the other hand we have

n n
a α − 1 2
(an − 1)2
(an − 1)2
2
=
=
|P (α)| =
aα − 1
(aα − 1)(aα − 1)
a2 − 2Re α · a + 1
300

(4)

D. Andrica, M. Piticari - On some interesting trigonometric sums
and formula (2) follows.

Proof 2. (Gabriel Dospinescu, Ecole Normale Superieure, Paris, France)
We will use so called Poisson kernel formula
+∞
X
1 − r2
=
r|m| z m ,
2
1 − 2r cos t + r
m=−∞

where |r| < 1

(5)

and z = cos t + i sin t. Applying this formula in our case we have
!
n−1
n−1
+∞

X
X
X
2kπ
1 − a2
=
a|m| eim n
2kπ
2
m=−∞
k=0 1 − 2a cos
k=0
+a
n
!
+∞
n−1 

X
X

X
2πim k
=
a|m|
e n
=
na|m|
m=−∞

=n

X
j∈Z

m∈Z

k=0

1−a
1 + an

=
n
,
(1 − an )2
1 − an
2n

an|j| = n

and formula (2) follows.
Proof 3. (Dorin Andrica) Consider the polynomial P ∈ C[X] having the
n
Y
factorization P =
(X 2 + ak X + b). Then
k=1

n
n
1 X 2X 2 + ak X + b − b

P ′ X 2X + ak
=
=
P
X 2 + ak X + b
X k=1 X 2 + ak X + b
k=1

=X

n
X
k=1

n
1
n
b X
1
+

2
2
X + ak X + b X
X k=1 X + ak X + b
n

X2 − b X
n
1
=
+ ,
2
X k=1 X + ak X + b X
and we derive the formula
n

X
XP ′ − nP
1
=
.
2
2
(X − b)P
X + ak X + b
k=1
301

(6)

D. Andrica, M. Piticari - On some interesting trigonometric sums
For the polynomial
n

2

P = (X − 1) =

n−1
Y
k=0


2kπ
+1
X − 2X cos
n
2

we have P ′ = 2nX n−1 (X n − 1), hence
XP ′ − nP
Xn + 1
2nX n (X n − 1) − n(X n − 1)2
=
n
=
,
(X 2 − 1)P
(X 2 − 1)(X n − 1)2
(X 2 − 1)(X n − 1)
and (2) follows from (6).
3. Applications
Application 1. In order to evaluate the sum (1) we take a = 2 in identity
(2) and get
n−1
X
n(2n + 1)
1
,
=
n − 1)
2kπ
3(2
k=0 4 − 4 cos
+1
n
that is
n−1
X
n(2n + 1)
1
 =
.
(7)
n − 1)

3(2
2
k=0 1 + 8 sin
n
Application 2. Let us use the identity (2) to prove the equality
n−1
X
k=1

sin

2

1



n

=

(n − 1)(n + 1)
.
3

Indeed, the identity (2) is equivalent to
n−1
X
k=1

1
a2 − 2a cos

2kπ
+1
n

=

n(an + 1)
1
.

2
n
(a − 1)(a − 1) (a − 1)2

Taking in the right hand side the limit for a → 1 we get


n(an + 1)
1
lim

a→1 (a2 − 1)(an − 1)
(a − 1)2
302

(8)

D. Andrica, M. Piticari - On some interesting trigonometric sums
1
(n − 1)an+1 − (n + 1)an + (n + 1)a − n + 1
lim
2n a→1
(a − 1)3

=
=
=
It follows

1
(n + 1)(n − 1)an − n(n + 1)an−1 + (n + 1)
lim
2n a→1
3(a − 1)2

(n − 1)(n + 1)
(n + 1)(n − 1)nan−2 (a − 1)
1
lim
=
.
a→1
2n
6(a − 1)
12
lim

a→1

n−1
X

1
a2 − 2a cos

k=1

that is

n−1
X

4 sin2

k=1

1


2kπ
+1
n


n

=

=

(n − 1)(n + 1)
,
12

(n − 1)(n + 1)
,
12

so we obtain identity (8).
Remarks. 1) Using the symmetry
 

(n − k)π
2
sin
= sin2
,
n
n

k = 1, 2, . . . , n − 1,

from identity (8) we get:
If n is odd, n = 2m + 1, then
m
X
k=1

1
sin2




2m + 1

=

m(2m + 2)
2m(2m + 2)
=
6
3

That is equivalent to
m
X

ctg

2

k=1

m(2m − 1)

=
.
2m + 1
3

(9)

If n is even, then we obtain
n

−1
2
X
k=1

sin

2

1


1
=

2
n




n2 − 4
n2 − 1
−1 =
.
3
6

303

(10)

D. Andrica, M. Piticari - On some interesting trigonometric sums
2) A different method to prove (9) is given in [1, page 147]. Consider the
trigonometric equation sin(2m + 1)x = 0, with roots
π


,
,...,
2m + 1 2m + 1
2m + 1
Expressing sin(2m + 1)x in terms of sin x and cos x, we obtain




2m + 1
2m + 1
2m
sin(2m + 1)x =
cos x sin x −
cos2m−2 x sin3 x + . . .
1
3





2m + 1
2m + 1
2m+1
2m
2m−2
= sin
x
ctg x −
ctg
x + ...
1
3

, k = 1, 2, . . . , m. Since sin2m+1 x 6= 0, we have
Set x =
2m + 1




2m + 1
2m + 1
2m
ctg x −
ctg 2m−2 x + · · · = 0
1
3
Substituting y = ctg 2 x yields




2m + 1 m
2m + 1 m−1
y −
y
+ · · · = 0,
1
3
an algebraic equation with roots
ctg

2



π
, ctg 2
, . . . , ctg 2
2m + 1
2m + 1
2m + 1

Using the Viet`a’s relation between coefficients and roots, we obtain


2m + 1
m
X
m(2m − 1)

3
=
ctg 2
=
2m + 1
2m + 1
3
k=1
1
Application 3. We use now the result in our Theorem to prove the
following identities:
If n is odd and n ≥ 3, then
n−1
2
X

k=1 cos2

1



n

=

304

n2 − 1
2

(11)

D. Andrica, M. Piticari - On some interesting trigonometric sums
If n is even and n ≥ 4, then
n

−1
2
X
k=1

1


cos2


n

=

n2 − 4
6

(12)

In order to prove the identity (11) we note that from (2) we have
n−1
X
k=0

1
2 + 2 cos

2kπ
n

n(an + 1)
a→−1 (a2 − 1)(an − 1)

= lim

an + 1
n2
n
lim
= .
4 a→−1 a + 1
4

=
That is

n−1
X
k=0

therefore

n−1
X
k=1

cos2

cos2

1


1



n


n

 = n2 ,

 = n2 − 1.

Using the symmetry

 

(n − k)π

2
2
= cos
,
cos
n
n

k = 1, . . . , n − 1,

the identity (11) follows.
To prove the identity (12) by the same method is much more complicated.
From (2) we have
n−1
X

k=0
k6= n
2

1
2kπ
2 + 2 cos
n

= lim
t→0

= lim

a→−1



n(an + 1)
1

2
n
(a − 1)(a − 1) (a + 1)2

n[(t − 1)n + 1]
1
− 2
n
t(t − 2)[(t − 1) − 1] t
305





D. Andrica, M. Piticari - On some interesting trigonometric sums
1
n[(t − 1)n + 1]t − (t − 2)[(t − 1)n − 1]
= − lim
2 t→0
t2 [(t − 1)n − 1]


n(n − 1) 2
3
t + t f (t)
nt 2 − nt +
1
2


= − lim
n(n − 1) 2
2 t→0 2
3
t −nt +
t + t h(t)
2


n(n − 1) 2 n(n − 1)(n − 2)
3
4
t −
+ t + t g(t)
(t − 2) −nt +
2
6



n(n − 1) 2
3
2
t −nt +
t + t h(t)
2

n(n − 1)(n − 2) n(n − 1)
n2 (n − 1)
−2

n2 − 1
1
2
6
2
=
,
=− ·
2
−n
12
since f, g, h are polynomials in t, and so f (0), g(0), h(0) are finite. It follows
n−1
X

k=1
k6= n
2

cos2

1



n

=

n2 − 4
3

and then using again the symmetry
 



(n − k)π
2
2
cos
= cos
,
n
n

k = 1, . . . , n − 1,

we get the identity (10).
Remark. It is possible to derive the relation (12) directly from (8) by
using the symmetry

n



k
π
π kπ
n
2 kπ
2
2 (n − 2k)π
2
2
cos
= sin

= sin
= sin
, k = 1, . . . , .
n
2
n
2n
n
2
Application 4. If x ∈ R and |x| > 1, then
i


h
n
2−1
2−1
n−1
x
x
+
x
+
1
2n
x
+
X
1
ih
i
=h


2
n
2kπ
2−1
2−1
x
x

1

1
x
+
x
+
k=0 x − cos
n
306

(13)

D. Andrica, M. Piticari - On some interesting trigonometric sums
Indeed, we have
n−1
X

n−1

1 X
1


=
.
2kπ
1
2a k=0 1
2 2kπ
k=0 a2 − 2a cos
+1
a+
− cos
n
2
a
n



1
1
a+
. Then a = x + x2 − 1, and from identity (2) we get
Let x =
2
a
1

n−1

1 X
2a k=0

1
x − cos

2kπ
n

=

n(an + 1)
,
(a2 − 1)(an − 1)

i.e. the relation (13).
Taking in (13), x = 2, we get
n−1
X
k=0

i
√ h
√ n
2n
2
+
3
2
+
3
+
1
1
i .
 =
√ h
√ n

2
3
+
3
3
2
+
3

1
1 + 2 sin
n

(14)

References
[1] Andreescu, T., Andrica, D., 360 Problems for Mathematical Contests,
GIL Publishing House, 2003.
[2] Andreescu, T., Andrica, D., Complex Numbers for A to... Z, Birkhauser
Verlag, Boston-Berlin-Basel, 2005.
[3] Andrica, D., Piticari, M., Problem U23, Mathematical Reflections
4(2006).
[4] Djuki´c, D., a.o., The IMO Compendium. A Collection of Problems
Suggested for the International Mathematical Olympiads: 1959-2004, Springer,
2006.
Authors:
Dorin Andrica
”Babe¸s-Bolyai” University
Faculty of Mathematics and Computer Science
307

D. Andrica, M. Piticari - On some interesting trigonometric sums
Cluj-Napoca, Romania
e-mail: [email protected]
Mihai Piticari
”Drago¸s-Vod˘a” National College
Cˆampulung Moldovenesc, Romania

308

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52