vol20_pp552-573. 195KB Jun 04 2011 12:06:09 AM

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

EXTREME RANKS OF (SKEW-)HERMITIAN SOLUTIONS TO A
QUATERNION MATRIX EQUATION∗
QING WEN WANG† AND JING JIANG‡

Abstract. The extreme ranks, i.e., the maximal and minimal ranks, are established for the
general Hermitian solution as well as the general skew-Hermitian solution to the classical matrix
equation AXA∗ + BY B ∗ = C over the quaternion algebra. Also given in this paper are the formulas
of extreme ranks of real matrices Xi , Yi , i = 1, · · · , 4, in a pair (skew-)Hermitian solution X =
X1 + X2 i + X3 j + X4 k, Y = Y1 + Y2 i + Y3 j + Y4 k. Moreover, the necessary and sufficient conditions
for the existence of a real (skew-)symmetric solution, a complex (skew-)Hermitian solution, and a
pure imaginary (skew-)Hermitian solution to the matrix equation mentioned above are presented in
this paper. Also established are expressions of such solutions to the equation when corresponding
solvability conditions are satisfied. The findings of this paper widely extend the known results in the

literature.

Key words. Quaternion matrix equation, Minimal rank, Maximal rank, Hermitian solution,
Skew-Hermitian solution.

AMS subject classifications. 15A03, 15A09, 15A24, 15A33.

1. Introduction. Throughout this paper, we denote the real number field by
R, the complex number field by C, the set of all m × n matrices over the quaternion
algebra
H = {a0 + a1 i + a2 j + a3 k | i2 = j 2 = k 2 = ijk = −1, a0 , a1 , a2 , a3 ∈ R}
by Hm×n , the identity matrix with the appropriate size by I. For a quaternion matrix
A, we denote the column right space, the row left space of A by R (A), N (A) , respectively, the dimension of R (A) by dim R (A) . By [9], dim R (A) = dim N (A) , which
is called the rank of A, and denoted by r(A). The Moore-Penrose inverse of a matrix
A ∈ Hm×n , denoted by A† , is defined to be the unique matrix X ∈ Hn×m satisfying
∗ Received

by the editors February 14, 2010. Accepted for publication July 31, 2010. Handling
Editor: Michael Neumann.
† Department

of Mathematics, Shanghai University, Shanghai 200444, P.R. China
(wqw858@yahoo.com.cn). Supported by the grants from the Ph.D. Programs Foundation of
Ministry of Education of China (20093108110001), the Scientific Research Innovation Foundation
of Shanghai Municipal Education Commission (09YZ13), Natural Science Foundation of China
(60672160), Singapore MoE Tier 1 Research Grant RG60/07, and Shanghai Leading Academic
Discipline Project (J50101).
‡ Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China, and Department of Mathematics and Applied Mathematics, QiLu Normal University, Jinan 250013, P.R. China.
552

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

Extreme Ranks of (Skew-) Hermitian Solutions

553


the following four matrix equations
(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.
Moreover, LA and RA stand for the two projectors LA = I − A† A, RA = I − AA†
induced by A.
We know that matrix equation is one of the topics of very active research in
matrix theory and applications, and a large number of papers have presented several
methods for solving several matrix equations (e.g. [4]-[6], [10], [23]-[26], [29]-[31], [37],
[39], [42]). As a very classical linear matrix equation,
(1.1)

AXA∗ + BY B ∗ = C

has been investigated by many authors from different aspects. For example, using generalized singular value decomposition, Chang and Wang [2] derived the expressions for
the general symmetric and minimum-2-norm symmetric solutions to (1.1) within the
real setting. Xu, Wei, and Zheng [38] obtained the general form of all least-squares
Hermitian (skew-Hermitian) solutions to (1.1). Liao and Bai [11] used generalized
singular value decomposition to investigate the symmetric positive semidefinite solution to (1.1). Zhang [40] gave necessary and sufficient conditions for the existence of a
Hermitian nonnegative-definite solution to (1.1). Wang and Zhang [32] gave a necessary and sufficient condition for the existence and an expression for the re-nonnegative
definite solution to (1.1) over H by using the decomposition of pairwise matrices.

Research on extreme ranks, i.e., maximal and minimal ranks, of solutions to linear
matrix equations have been actively ongoing for more than 30 years (see [15]-[17],
[19], [20], [27], [28], [33]-[35]). It is worthy to say that minimal and maximal ranks
of a general solution to a matrix equation are very useful in linear programming
computations (see [15]-[17]). In 2009, Liu, Tian and Takane [13] presented formulas
for the maximal and minimal ranks of a Hermitian solution and a skew-Hermitian
solution to the special case of the matrix equation (1.1) in which B = 0. The following
matrix equation:
(1.2)

AXA∗ = C

over C, has been well examined by many authors (see [1], [3], [7], [8], [32], [36], [41]).
Note that, to our knowledge, there has been little information on extreme ranks
of the (skew-)Hermitian solution to the matrix equation (1.1). This paper aims to
consider the formulas of extremal ranks of the general (skew-)Hermitian solution to
(1.1).
The paper is organized as follows. In Section 2, we first give an expression of
the general Hermitian solution to (1.1) by using the generalized inverses of the coefficient matrices of this equation, then derive the formulas of extremal ranks of the


Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

554

Q.W. Wang and J. Jiang

general Hermitian solution to (1.1). We also give the corresponding results on the
skew-Hermitian solution to (1.1). In Section 3, we first present the maximal and
minimal ranks of the real matrices X1 , X2 , X3 , X4 and Y1 , Y2 , Y3 , Y4 in a Hermitian
solution X = X1 + X2 i + X3 j + X4 k, Y = Y1 + Y2 i + Y3 j + Y4 k to (1.1), then give
some necessary and sufficient conditions for (1.1) to have a real symmetric solution,
a complex Hermitian solution, and a pure imaginary Hermitian solution. The corresponding results on the skew-Hermitian solution to (1.1) are also considered. Some
special cases of (1.1) are also considered in Section 4.
2. Ranks of the general Hermitian solution to (1.1). In this section, we

consider the maximal and minimal ranks of the general (skew-)Hermitian solution to
(1.1) over H.
We begin with the following lemma that is due to Tian [18], and can be generalized
to H.
Lemma 2.1. Suppose that the matrix equation
(2.1)

AXB + CY D = E

is consistent over H, where X ∈ Hp×q , Y ∈ Hs×t unknown. Then the general solution
of (2.1) can be expressed by
X = X0 + S1 LG U RH T1 + LA V1 + V2 RB ,
Y = Y0 − S2 LG U RH T2 + LC W1 + W2 RD ,
where X0 and Y0 are a special pair solution of (2.1),




S1 = (Ip , 0) , S2 = (0, Is ) , T1 = (Iq , 0) , T2 = (0, It ) , G = (A, C), H =


µ

B
D



;

U, V1 , V2 , W1 , and W2 are arbitrary quaternion matrices with suitable sizes.
Lemma 2.2. Consider the matrix equation (1.1) where A ∈ Hm×n , B ∈ Hm×p ,
C ∈ Hm×m are given, and X ∈ Hn×n , Y ∈ Hp×p unknown.
1. If C = C ∗ , and (1.1) has a Hermitian solution, then the general Hermitian
solution to (1.1) can be expressed as
X = X0 + S1 LG ZLG S1∗ + LA V + V ∗ LA ,
(2.2)

Y = Y0 − S2 LG ZLG S2∗ + LB W + W ∗ LB ,

where X0 and Y0 are a special pair Hermitian solution of (1.1),

(2.3)

S1 = (In , 0) , S2 = (0, Ip ) , G = (A, B) ;

Z is an arbitrary Hermitian quaternion matrix with consistent size, and V
and W are arbitrary quaternion matrices with suitable sizes.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

Extreme Ranks of (Skew-) Hermitian Solutions

555

2. If C = −C ∗ , and (1.1) has a skew-Hermitian solution, then the general skewHermitian solution can be expressed as

X = X0 + S1 LG ZLG S1∗ + LA V − V ∗ LA ,
Y = Y0 − S2 LG ZLG S2∗ + LB W − W ∗ LB ,
where X0 and Y0 are a special pair skew-Hermitian solution of (1.1), and S1 ,
S2 , and G are the same as (2.3); Z is an arbitrary skew-Hermitian quaternion
matrix with consistent size, and V and W are arbitrary quaternion matrices
with suitable sizes.
Proof. We here only prove 1. The proof of 2 can be similarly finished.
Suppose that X1 = X1∗ , Y1 = Y1∗ are an arbitrary pair Hermitian solution of
(1.1). It follows from Lemma 2.1 and R(A,B)∗ = L(A,B) , RA∗ = LA , RB ∗ = LB that
˜ 0 + S1 LG U LG S1∗ + LA V1 + V2 LA ,
X1 = X
Y1 = Y˜0 − S2 LG U LG S2∗ + LB W1 + W2 LB ,
˜ 0 and Y˜0 are a special pair solution of (1.1), and U, V1 , V2 , W1 , and W2 are
where X
³
´
X1 +X1∗ Y1 +Y1∗
arbitrary matrices with suitable sizes. Since
is also a pair Hermitian
, 2

2
solution of (1.1), we get that
1 ˜
1
1
1



˜∗
(X1 + X1∗ ) = (X
0 + X0 ) + S1 LG (U + U )LG S1 + LA (V1 + V2 )
2
2
2
2
1
+ (V1 + V2∗ )∗ LA ,
2
1

1
1
1
Y1 = (Y1 + Y1∗ ) = (Y˜0 + Y˜0∗ ) − S2 LG (U + U ∗ )LG S2∗ + LB (W1 + W2∗ )
2
2
2
2
1
+ (W1 + W2∗ )∗ LB .
2

X1 =

Putting
1 ˜
˜ 0∗ ), Y0 = 1 (Y˜0 + Y˜0∗ ), V = 1 (V1 + V2∗ ),
(X0 + X
2
2
2
1
1


W = (W1 + W2 ), Z = (U + U ),
2
2

X0 =

and noting that X0 and Y0 are a special pair Hermitian solution of (1.1), Z is an
arbitrary Hermitian matrix, we get that any pair Hermitian solution (X1 , Y1 ) of (1.1)
has the form of (2.2).
Conversely, it can be verified that a pair of matrices having the form of (2.2) are
a pair Hermitian solution of (1.1). Therefore, (2.2) is an expression of the general
Hermitian solution to (1.1).

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

556

Q.W. Wang and J. Jiang

Tian and Liu in [21] and [12] gave the following extremal ranks of matrix expressions A − BXB ∗ and A − BX − X ∗ B ∗ over a field. The results can be generalized to
H.
Lemma 2.3. Let A ∈ Hm×m , B ∈ Hm×n .
1. If A = A∗ , then
max

X=X ∗ ∈Hn×n

r(A − BXB ∗ ) = r[A, B],

¸
A B
;
min
r(A − BXB ) = 2r[A, B] − r
B∗ 0
X=X ∗ ∈Hn×n
¸¾
½
·
A B
,
max r(A + BX + X ∗ B ∗ ) = min m, r
n×m
B∗ 0
X∈H
¸
·
A B
− 2r(B).
min r(A + BX + X ∗ B ∗ ) = r
B∗ 0
X∈Hn×m


·

2. If A = −A∗ , then
max

X=−X ∗ ∈Hn×n

r(A − BXB ∗ ) = r[A, B],

¸
·
A
B
;
r(A − BXB ∗ ) = 2r[A, B] − r
−B ∗ 0
X=−X ∗ ∈Hn×n
¸¾
½
·
A
B
,
max
r(A + BX − X ∗ B ∗ ) = min m, r

n×m
−B
0
X∈H
¸
·
A
B
− 2r(B).
min r(A + BX − X ∗ B ∗ ) = r
−B ∗ 0
X∈Hn×m
min

The following lemma is due to Marsaglia and Styan [14], which can be generalized
to H.
Lemma 2.4. Let A ∈ Hm×n , B ∈ Hm×k , C ∈ Hl×n , D ∈ Hj×k and E ∈ Hl×i .
Then they satisfy the following rank equalities:
¸
·
A
− r(A),
(a) r(CLA ) = r
C
¸
·
£
¤
B A
− r(C),
(b) r B ALC = r
0 C
¸
¸
·
·
C 0
C
− r(B).
=r
(c) r
A B
RB A
Now we give one of the main theorems in this paper.
Theorem 2.5. Suppose that the matrix equation (1.1), where A ∈ Hm×n , B ∈
, C ∈ Hm×m , C = C ∗ , X ∈ Hn×n , and Y ∈ Hp×p , has a Hermitian solution.

m×p

H

(a) The maximal and minimal ranks of the general Hermitian solution to (1.1)

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

557

Extreme Ranks of (Skew-) Hermitian Solutions

are given by:
(2.4)

max

AXA∗ +BY B ∗ =C

r(X) = min{n, r[B, C] + 2n − r(A) − r(G)},

X=X ∗

(2.5)

min

AXA∗ +BY B ∗ =C

r(X) = 2r[B, C] − r

X=X ∗

(2.6)

max

AXA∗ +BY B ∗ =C

min

AXA∗ +BY B ∗ =C

C
B∗

B
0

¸

;

r(Y ) = min{p, r[A, C] + 2p − r(B) − r(G)},

Y =Y ∗

(2.7)

·

r(Y ) = 2r[A, C] − r

Y =Y ∗

·

C
A∗

A
0

¸

.

(b) The rank of the general Hermitian solution X to (1.1) is invariant if and only
if
¸
·
C B
=n
2r[B, C] − r
B∗ 0
or
r[B, C] + r(A) + r(G) = r

·

C
B∗

B
0

¸

+ 2n.

The rank of the general Hermitian solution Y to (1.1) is invariant if and only
if
¸
·
C A
=p
2r[A, C] − r
A∗ 0
or
r[A, C] + r(B) + r(G) = r

·

C
A∗

A
0

¸

+ 2p.

Proof. (a) Applying Lemma 2.2 and Lemma 2.3 to X of (2.2), we get that
max

AXA∗ +BY B ∗ =C
X=X ∗

(2.8)

r(X) = max
r(X0 + S1 LG ZLG S1∗ + LA V + V ∗ LA )

Z=Z ,V

·
½
¸¾
X0 + S1 LG ZLG S1∗ LA
= min n, max∗ r
Z=Z
LA
0
½
µ·
¸ ·
¸
X0 LA
S1 LG
= min n, max∗ r
+
Z[ LG S1∗
Z=Z
LA 0
0
½
·
¸¾
X0 LA S1 LG
= min n, r
;
LA 0
0

¶¾
0 ]

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

558

Q.W. Wang and J. Jiang

min

AXA∗ +BY B ∗ =C

r(X) = min
r(X0 + S1 LG ZLG S1∗ + LA V + V ∗ LA )

Z=Z ,V

X=X ∗

·

¸
X0 + S1 LG ZLG S1∗ LA
= min∗ r
− 2r(LA )
Z=Z
LA
0
µ·
¸ ·
¸

X0 LA
S1 LG
= min∗ r
+
Z [ LG S1∗ 0 ] − 2r(LA )
Z=Z
LA 0
0


·
¸
X0
LA S1 LG
X0 LA S1 LG
= 2r
− r  LA
0
0 
LA 0
0

0
0
LG S1

− 2r(LA ).

(2.9)

By Lemma 2.4, block Gaussian elimination, and AX0 A∗ + BY0 B ∗ = C, we have that
r(LA ) = n − r(A),


X0 In S1 0
·
¸
 In 0
0 A∗ 
X0 S1 LG LA
 − r(A) − r(A∗ ) − r(G)
r
= r
 0
A 0
0 
LA
0
0
0
0 G 0


r

X0
LA
LG S1∗

LA
0
0

S1 LG
0
0

= r[B, C] + 2n − r(A) − r(G),


X0 In S1 0
0

 I
0 A∗ 0 

 n 0



 = r  S1 0
0
0 G∗  − r(A) − r(A∗ ) − 2r(G)


 0
A 0
0
0 
0
0 G 0
0
¸
·
C B
+ 2n − 2r(G).
=r
B∗ 0

Substituting above two equalities into (2.8) and (2.9) yields (2.4) and (2.5), respectively.
Similarly, we can get the corresponding results on Y.
(b) The ranks of X, Y, expressed as (2.2), in the general pair Hermitian solution
to (1.1) are invariant if and only if
(2.10)

max r(X) − min r(X) = 0, max r(Y ) − min r(Y ) = 0.

Hence result (b) follows from (2.4)-(2.7), and (2.10).
Similarly, we can get the following.
Theorem 2.6. Let A ∈ Hm×n , B ∈ Hm×p , C ∈ Hm×m , C = −C ∗ , X ∈ Hn×n ,
and Y ∈ Hp×p . Suppose that (1.1) has a skew-Hermitian solution over H.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

559

Extreme Ranks of (Skew-) Hermitian Solutions

(a) The maximal and minimal ranks of the general skew-Hermitian solution to
(1.1) are given by
max

AXA∗ +BY B ∗ =C

r(X) = min{n, r[B, C] + 2n − r(A) − r(G)},

X=−X ∗

min


AXA +BY B ∗ =C

r(X) = 2r[B, C] − r

X=−X ∗

max

AXA∗ +BY B ∗ =C

min

C
−B ∗

B
0

¸

.

r(Y ) = min{p, r[A, C] + 2p − r(B) − r(G)};

Y =−Y ∗

AXA∗ +BY B ∗ =C

·

r(Y ) = 2r[A, C] − r

Y =−Y ∗

·

C
−A∗

A
0

¸

.

(b) The rank of the general skew-Hermitian solution X to (1.1) is invariant if
and only if
¸
·
C
B
= n,
2r[B, C] − r
−B ∗ 0
or r[B, C] + r(A) + r(G) = r

·

C
−B ∗

B
0

¸

+ 2n.

The rank of the general skew-Hermitian solution Y to (1.1) is invariant if
and only if
¸
¸
·
·
C
A
C
A
+2p.
= p, or r[A, C]+r(B)+r(G) = r
2r[A, C]−r
−A∗ 0
−A∗ 0
3. Extreme ranks of the real matrices in a Hermitian solution to (1.1)
over H. In this section, we consider the maximal and minimal ranks of real matrices
Xi , Yi in a pair Hermitian solution X = X1 + X2 i + X3 j + X4 k ∈ Hn×n and Y =
Y1 + Y2 i + Y3 j + Y4 k ∈ Hp×p to (1.1) where
A = A1 + A2 i + A3 j + A4 k, B = B1 + B2 i + B3 j + B4 k, C = C1 + C2 i + C3 j + C4 k,
Ai , Bi , Ci , i = 1, · · · , 4, are real matrices with suitable sizes.
For an arbitrary quaternion matrix M = M1 + M2 i + M3 j + M4 k, we now define
a map φ(·), from Hm×n to R4m×4n , by


M1 −M2 −M3 −M4
 M2 M1 −M4 M3 
.
(3.1)
φ(M ) = 
 M3 M4
M1 −M2 
M4

−M3

M2

M1

By (3.1), it is easy to verify that φ(·) satisfies the following properties:

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

560

Q.W. Wang and J. Jiang

(a)
(b)
(c)
(d)

M = N ⇐⇒ φ(M ) = φ(N ).
φ(M + N ) = φ(M ) + φ(N ), φ(M N ) = φ(M )φ(N ), φ(kM ) = kφ(M ), k ∈ R.
φ(M ∗ ) = φT (M ), φ(M † ) = φ† (M ).
−1
−1
−1
φ(M ) = Tm
φ(M )Tn = Rm
φ(M )Rn = Sm
φ(M )Sn , where for t = m, n,

Rt =

·

0
I2t

−I2t
0



¸



0
 0
, St = 
 0
It

0
 It
Tt = 
 0
0

−It
0
0
0

0
0
0
−It

0
0
−It
0

0
It
0
0


−It
0 
,
0 
0


0
0 
.
It 
0

(e) r [φ(M )] = 4r(M ).
(f) M ∗ = M ⇔ φT (M ) = φ(M ), and M ∗ = −M ⇔ φT (M ) = −φ(M ).
In the following theorems and corollaries, X0 , Y0 , S1 , S2 , and G are defined as in
Lemma 2.2.
Theorem 3.1. The matrix equation (1.1) has a Hermitian solution over H if
and only if the matrix equation
(3.2)

φ(A) (Xij )4×4 φT (A) + φ(B) (Yij )4×4 φT (B) = φ(C), i, j = 1, 2, 3, 4,

has a symmetric solution over R. In this case, the general Hermitian solution of (1.1)
over H can be written as:

(3.3)

(3.4)

X = X1 + X2 i + X3 j + X4 k
1
1 T
T
= (X11 + X22 + X33 + X44 ) + (X12
− X12 + X34
− X34 )i
4
4
1 T
1 T
T
T
− X13 + X24 − X24
)j + (X14
− X14 + X23
− X23 )k,
+ (X13
4
4
Y = Y1 + Y2 i + Y3 j + Y4 k
1
1 T
T
= (Y11 + Y22 + Y33 + Y44 ) + (Y12
− Y12 + Y34
− Y34 )i
4
4
1 T
1 T
T
T
− Y13 + Y24 − Y24
)j + (Y14
− Y14 + Y23
− Y23 )k,
+ (Y13
4
4

T
T
T
T
where Xtt = Xtt
, Ytt = YttT , t = 1, 2, 3, 4; X1j
= Xj1 , Y1j
= Yj1 , j = 2, 3, 4; X2j
=
T
T
T
= Y43 are the general solutions of (3.2) over
= X43 , Y34
Xj2 , Y2j
= Yj2 , j = 3, 4; X34

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

Extreme Ranks of (Skew-) Hermitian Solutions

561

R. Written in explicit forms, Xi , Yi , i = 1, 2, 3, 4, in (3.3) and (3.4) are
1
1
1
1
P1 φ(X0 )P1T + P2 φ(X0 )P2T + P3 φ(X0 )P3T + P4 φ(X0 )P4T
4
4
4
4
1
T
T
+ [P1 , P2 , P3 , P4 ] E1 ZE1 [P1 , P2 , P3 , P4 ]
4
T

 
V1
V1
 V2   V2  T
T

 
+ [P1 , P2 , P3 , P4 ] Lφ(A) 
 V3  +  V3  Lφ(A) [P1 , P2 , P3 , P4 ] ,
V4
V4

X1 =

(3.5)

1
1
1
1
P2 φ(X0 )P1T − P1 φ(X0 )P2T + P4 φ(X0 )P3T − P3 φ(X0 )P4T
4
4
4
4
1
T
− [P1 , −P2 , P3 , −P4 ] E1 ZE1T [P2 , P1 , P4 , P3 ]
4
T
 

V1
V1
 V2   V2  T
T

 
− [−P2 , P1 , −P4 , P3 ] Lφ(A) 
 V3  +  V3  Lφ(A) [−P2 , P1 , −P4 , P3 ] ,

X2 =

(3.6)

V4

V4

1
1
1
1
P3 φ(X0 )P1T − P1 φ(X0 )P3T + P2 φ(X0 )P4T − P4 φ(X0 )P2T
4
4
4
4
1
T
− [P1 , −P2 , −P3 , P4 ]E1 ZE1T [P3 , P4 , P1 , P2 ]
4
T

 
V1
V1
 V2   V2  T
T

 
− [−P3 , P1 , −P2 , P4 ] Lφ(A) 
 V3  +  V3  Lφ(A) [−P3 , P1 , −P2 , P4 ] ,

X3 =

(3.7)

V4
V4
1
1
1
1
X4 = P4 φ(X0 )P1T − P1 φ(X0 )P4T + P3 φ(X0 )P2T − P2 φ(X0 )P3T
4
4
4
4
1
T
T
− [−P1, − P2 , P3 , P4 ]E1 ZE1 [P4 , P3 , P2 , P1 ]
4
T

 
V1
V1
 V2   V2  T
T

 
(3.8)
− [−P4 , P1 , −P3 , P2 ] Lφ(A) 
 V3  +  V3  Lφ(A) [−P4 , P1 , −P3 , P2 ] ,
V4
V4

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

562

Q.W. Wang and J. Jiang

1
1
1
1
Q1 φ(Y0 )QT1 + Q2 φ(Y0 )QT2 + Q3 φ(Y0 )QT3 + Q4 φ(Y0 )QT4
4
4
4
4
1
T
T
− [Q1 , Q2 , Q3, Q4 ]E2 ZE2 [Q1 , Q2 , Q3 , Q4 ]
4
T

 
W1
W1
 W2   W2  T
T

 
+ [Q1 , Q2 , Q3 , Q4 ] Lφ(B) 
 W3  +  W3  Lφ(B) [Q1 , Q2 , Q3 , Q4 ] ,
W4
W4

Y1 =

(3.9)

1
1
1
1
Q2 φ(Y0 )QT1 − Q1 φ(Y0 )QT2 + Q4 φ(Y0 )QT3 − Q3 φ(Y0 )QT4
4
4
4
4
1
T
T
+ [Q1 , −Q2 , Q3 , −Q4 ]E2 ZE2 [Q2 , Q1 , Q4 , Q3 ]
4
(3.10)
T

 
W1
W1
 W2   W2  T
T

 
− [−Q2 , Q1 , −Q4 , Q3 ] Lφ(B) 
 W3  +  W3  Lφ(B) [−Q2 , Q1 , −Q4 , Q3 ] ,
Y2 =

W4

W4

1
1
1
1
Q3 φ(Y0 )QT1 − Q1 φ(Y0 )QT3 + Q2 φ(Y0 )QT4 − Q4 φ(Y0 )QT2
4
4
4
4
1
T
T
+ [Q1 , −Q2 , −Q3 , Q4 ]E2 ZE2 [Q3 , Q4 , Q1 , Q2 ]
4
(3.11)
T

 
W1
W1
 W2   W2  T
T

 
− [−Q3 , Q1 , −Q2 , Q4 ] Lφ(B) 
 W3  +  W3  Lφ(B) [−Q3 , Q1 , −Q2 , Q4 ] ,
W4
W4
Y3 =

1
1
1
1
Q4 φ(Y0 )QT1 − Q1 φ(Y0 )QT4 + Q3 φ(Y0 )QT2 − Q2 φ(Y0 )QT3
4
4
4
4
1
T
+ [−Q1 , −Q2 , Q3 , Q4 ]E2 ZE2T [Q4 , Q3 , Q2 , Q1 ]
4
(3.12)
T

 
W1
W1
 W2   W2  T
T

 
− [−Q4 , Q1 , −Q3 , Q2 ] Lφ(B) 
 W3  +  W3  Lφ(B) [−Q4 , Q1 , −Q3 , Q2 ] ,
W4
W4
Y4 =

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

563

Extreme Ranks of (Skew-) Hermitian Solutions

where
P1 = [In , 0, 0, 0] , P2 = [0, In , 0, 0] , P3 = [0, 0, In , 0] , P4 = [0, 0, 0, In ] ,
Q1 = [Ip , 0, 0, 0] , Q2 = [0, Ip , 0, 0] , Q3 = [0, 0, Ip , 0] , Q4 = [0, 0, 0, Ip ] ,
E1 = φ(S1 )Lφ(G) , E2 = φ(S2 )Lφ(G) ;
Z is arbitrary real symmetric matrix, and V1 , V2 , V3 , V4 , W1 , W2 , W3 , and W4 are
arbitrary real matrices with compatible sizes.
Proof. Suppose that (1.1) has a Hermitian solution
X = X1 + X2 i + X3 j + X4 k, Y = Y1 + Y2 i + Y3 j + Y4 k
over H. Applying properties (a) and (b) of φ(·) to (1.1) yields
φ(A)φ(X)φT (A) + φ(B)φ(Y )φT (B) = φ(C), φT (X) = φ(X), φT (Y ) = φ(Y ),
which implies that φ(X), φ(Y ) are real symmetric solutions to (3.2). Conversely,
suppose that (3.2) has a real symmetric solution


X11
 X21
X=
 X31
X41

i.e.

X12
X22
X32
X42

X13
X23
X33
X43



Y11
X14


Y21
X24 
, Y =
 Y31
X24 
Y41
X44

Y12
Y22
Y32
Y42

Y13
Y23
Y33
Y43


Y14
Y24 
,
Y24 
Y44

φ(A)XφT (A) + φ(B)Y φT (B) = φ(C), X T = X, Y T = Y.
By property (d) of φ(·), we have that
−1
−1
−1
Tm
φ(A)Tn XTn−1 φT (A)Tm + Tm
φ(B)Tp Y Tp−1 φT (B)Tm = Tm
φ(C)Tm ,
−1
−1
−1
Rm
φ(A)Rn XRn−1 φT (A)Rm + Rm
φ(B)Rp Y Rp−1 φT (B)Rm = Rm
φ(C)Rm ,
−1
−1
−1
Sm
φ(A)Sn XSn−1 φT (A)Sm + Sm
φ(B)Sp Y Sp−1 φT (B)Sm = Sm
φ(C)Sm .

Hence
φ(A)Tn XTn−1 φT (A) + φ(B)Tp Y Tp−1 φT (B) = φ(C),
φ(A)Rn XRn−1 φT (A) + φ(B)Rp Y Rp−1 φT (B) = φ(C),
φ(A)Sn XSn−1 φT (A) + φ(B)Sp Y Sp−1 φT (B) = φ(C),
implying Tn XTn−1 , Tp Y Tp−1 , Rn XRn−1 , Rp Y Rp−1 , Sn XSn−1 , and Sp Y Sp−1 are also
symmetric solutions of (3.2) over R. Thus,
1
1
(X + Tn XTn−1 + Rn XRn−1 + Sn XSn−1 ), (Y + Tp Y Tp−1 + Rp Y Rp−1 + Sp Y Sp−1 )
4
4

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

564

Q.W. Wang and J. Jiang

are symmetric solutions of (3.2), where
g
X + Tp XTp−1 + Rp XRp−1 + Sp XSp−1 = (X
ij )4×4 , i, j = 1, 2, 3, 4

and

g
X
11 = X11 + X22 + X33 + X44 ,
T
T
g
X13 = X13 − X13
+ X24
− X24 ,
T
T
g
X21 = X12 − X12 + X34 − X34 ,

T
T
g
X
12 = X12 − X12 + X34 − X34 ,
T
T
g
X
14 = X14 − X14 + X23 − X23 ,
g
X
22 = X11 + X22 + X33 + X44 ,

T
T
g
X
41 = X14 − X14 + X23 − X23 ,
T
T
g
X
43 = X12 − X12 + X34 − X34 ,

T
T
g
X
42 = X13 − X13 + X24 − X24 ,
g
X
44 = X11 + X22 + X33 + X44 .

T
T
g
X
23 = X14 − X14 + X23 − X23 ,
T
T
g
X
31 = X13 − X13 + X24 − X24 ,
g
X
33 = X11 + X22 + X33 + X44 ,

T
T
g
X
24 = X13 − X13 + X24 − X24 ,
T
T
g
X
32 = X14 − X14 + X23 − X23 ,
T
T
g
X
34 = X12 − X12 + X34 − X34 ,

g
Y + Tp Y Tp−1 + Rp Y Rp−1 + Sp Y Sp−1 has a form similar to (X
ij )4×4 . We omit it here
for simplicity.
Let

ˆ = 1 (X11 + X22 + X33 + X44 ) + 1 (X T − X12 + X T − X34 )i
X
34
4
4 12
1 T
1 T
T
T
+ (X13
− X13 + X24 − X24
)j + (X14
− X14 + X23
− X23 )k,
4
4
1
1 T
T
Yˆ = (Y11 + Y22 + Y33 + Y44 ) + (Y12
− Y12 + Y34
− Y34 )i
4
4
1 T
1 T
T
T
− Y13 + Y24 − Y24
)j + (Y14
− Y14 + Y23
− Y23 )k.
+ (Y13
4
4
Then by (3.1),
ˆ = 1 (X + Tn XT −1 + Rn XR−1 + Sn XS −1 ),
φ(X)
n
n
n
4
1
φ(Yˆ ) = (Y + Tp Y Tp−1 + Rp Y Rp−1 + Sp Y Sp−1 ),
4
ˆ
ˆ
we have that X, Y are a pair Hermitian solution of (1.1) by the property (a). Observe
that Xij and Yij , i, j = 1, 2, 3, 4 in (3.2) can be written as
Xij = Pi XPjT , Yij = Qi Y QTj .
From Lemma 2.2, the general solutions to (3.2) can be written as
X = φ(X0 ) + φ(S1 )Lφ(G) ZLφ(G) φT (S1 ) + 4Lφ(A) [V1 , V2 , V3 , V4 ]
T

+ 4 [V1 , V2 , V3 , V4 ] Lφ(A) ,
Y = φ(Y0 ) − φ(S2 )Lφ(G) ZLφ(G) φT (S2 ) + 4Lφ(B) [W1 , W2 , W3 , W4 ]
T

+ 4 [W1 , W2 , W3 , W4 ] Lφ(B) ,

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

565

Extreme Ranks of (Skew-) Hermitian Solutions

where Z is an arbitrary real symmetric matrix and V1 , V2 , V3 , V4 , W1 , W2 , W3 , and
W4 are arbitrary with suitable sizes. Hence, for i, j = 1, 2, 3, 4,
Xij = Pi φ(X0 )PjT + Pi φ(S1 )Lφ(G) ZLφ(G) φT (S1 )PjT + 4Pi Lφ(A) Vj + 4ViT Lφ(A) PjT ,
Yij = Qi φ(Y0 )QTj − Qi φ(S2 )Lφ(G) ZLφ(G) φT (S2 )QTj + 4Qi Lφ(B) Wj + 4WiT Lφ(B) QTj .
Substituting them into (3.3) and (3.4) yields real matrices Xi and Yi , i = 1, 2, 3, 4 in
(3.5)-(3.12).
Now we consider the maximal and minimal ranks of real matrices Xi , Yi in Hermitian solutions X = X1 + X2 i + X3 j+ X4 k and Y = Y1 + Y2 i + Y3 j + Y4 k to
(1.1).
Theorem 3.2. Suppose the matrix equation (1.1) has a Hermitian solution over
H, and for i, j = 1, 2, 3, 4,
¯
½
¾
¯
A(X1 + X2 i + X3 j + X4 k)A∗
n×n ¯
Ji = Xi ∈ R
,
¯ +B(Y1 + Y2 i + Y3 j + Y4 k)B ∗ = C
½
Tj = Yj ∈ Rp×p

Then we have the following:

¯
¾
¯
A(X1 + X2 i + X3 j + X4 k)A∗
¯
.
¯ +B(Y1 + Y2 i + Y3 j + Y4 k)B ∗ = C

(a) The maximal and minimal ranks of Xi in the general Hermitian solution
X = X1 + X2 i + X3 j + X4 k to (1.1) are given by
(
"
#
)
0
0
Ai
max r(Xi ) = min n, r
ei φ(B) φ(C) + 2n − 4r(A) − 4r(G) ;
Xi ∈Ji
A
min r(Xi ) = 2r

Xi ∈Ji

"

0
e
Ai



Ai
0
φ(B) φ(C)

−A2
 A1
−2r 
 A4
−A3

where


A2
 −A1
e1 = 
A
 A4
A3

A3
−A4
−A1
−A2

−A3
−A4
A1
A2

#



0

−r 0
ei
A


−A4
A3 
,
−A2 
A1



−A1
−A4
 −A2
−A3 
e2 = 
, A
 −A3
A2 
A4
−A1


Ai
0

0
φT (B) 
φ(B) φ(C)

A3
−A4
−A1
−A2


−A4
−A3 
,
A2 
−A1

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

566

Q.W. Wang and J. Jiang



−A1
 −A2
e3 = 
A
 −A3
A4


−A2
 −A1
A1 = 
 −A4
A3


−A1
 A2
A3 = 
 −A3
−A4

A2
−A1
A4
A3



−A1
−A4
 −A2
−A3 
e4 = 
, A
 −A3
A2 
A4
−A1

A2
−A1
A4
A3


A3
−A4 
,
−A1 
−A2

A3
−A4
−A1
A2


T
A4

−A3 
 , A2 = 


−A2
−A1

−A1
A2
−A3
A4

A3
−A4
−A1
A2

T
A4
−A3 
 ,
−A2 
−A1

−A2
−A1
−A4
A3


T
A4
−A1
 A2
−A3 
 , A4 = 
 −A3
−A2 
−A1
−A4

−A2
−A1
−A4
A3

T
A3
A4 
 .
−A1 
A2

(b) The maximal and minimal ranks of Yj in a Hermitian solution Y1 + Y2 i +
Y3 j + Y4 k to (1.1) are given by
#
)
(
"
Bj
0
0
+ 2p − 4r(B) − 4r(G) ;
max r(Yj ) = min p, r e
Yj ∈Tj
Bj φ(A) φ(C)
min r(Yj ) = 2r

Yj ∈Tj

"

0
e
Bj



0
φ(A)

−B2
 B1
−2r 
 B4
−B3

Bj
φ(C)

−B3
−B4
B1
B2

#



0

−r 0
ej
B


0
0
φ(A)

−B4
B3 
,
−B2 
B1


Bj

φT (A) 
φ(C)

where


B2
 −B1
e1 = 
B
 B4
B3


−B1
 −B2
e3 = 
B
 −B3
B4

B3
−B4
−B1
−B2



−B1
−B4
 −B2
−B3 
e2 = 
, B
 −B3
B2 
B4
−B1

B3
−B4
−B1
−B2


−B4
−B3 
,
B2 
−B1

B2
−B1
B4
B3



−B1
−B4
 −B2
−B3 
e4 = 
, B
 −B3
B2 
B4
−B1

B2
−B1
B4
B3


B3
−B4 
,
−B1 
−B2

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

567

Extreme Ranks of (Skew-) Hermitian Solutions



−B2
 −B1
B1 = 
 −B4
B3



−B1
 B2
B3 = 
 −B3
−B4

B3
−B4
−B1
B2


T
B4
−B1
 B2
−B3 
 , B2 = 
 −B3
−B2 
−B1
−B4

B3
−B4
−B1
B2

T
B4
−B3 
 ,
−B2 
−B1

−B2
−B1
−B4
B3


T
B4
−B1


−B3 
B2
, B4 = 
 −B3
−B2 
−B1
−B4

−B2
−B1
−B4
B3

T
B3
B4 
 .
−B1 
B2

Proof. We only derive the maximal and minimal ranks of the matrix X1 . The
others can be established similarly. Applying Lemma 2.3 to (3.5), we get the following

1
max r(X1 ) = max r(M + Pˆ Z Pˆ T + P V + V T P T )
4
Z=Z T ,V
½
¾
= min n, max r(U )

X1 ∈J1

Z=Z T

¸¾
½
·
M P Pˆ
,
= min n, r
PT 0 0
1
min r(X1 ) = min r(M + Pˆ Z Pˆ T + P V + V T P T )
X1 ∈J1
4
Z=Z T ,V
= min r(U ) − 2r(P )
Z=Z T

= 2r

·

M
PT

P
0


0

¸



M

− r  PT
Pˆ T

P
0
0




0  − 2r(P ),
0

where
¸ h
·
¸
i
1 Pˆ
P
Z Pˆ T 0 ,
+
0
4 0
1
1
1
1
M = P1 φ(X0 )P1T + P2 φ(X0 )P2T + P3 φ(X0 )P3T + P4 φ(X0 )P4T ,
4
4
4
4
P = [P1 , P2 , P3 , P4 ]Lφ(A) , Pˆ = [P1 , P2 , P3 , P4 ]E1 .
U=

·

M + 41 Pˆ Z Pˆ T
PT

P
0

¸

=

·

M
PT

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

568

Q.W. Wang and J. Jiang

By Lemma 2.4, block Gaussian elimination, and AX0 A∗ + BY0 B ∗ = C, we have that


M
D1
D2
0
¸
·
 D1T
0
0
Ψ(A∗ ) 
M P Pˆ
 − 4r(φ(A))

=
r
r

 0 Ψ(A)
0
0
PT 0 0
0
0
Ψ(G)
0

where

− 4r(φ(A∗ )) − 4r(φ(G))
"
#
0
0
A1
=r
e1 φ(B) φ(C) + 2n − 4r(A) − 4r(G),
A

D1 = [P1 , P2 , P3 , P4 ] , D2 = [P1 , P2 , P3 , P4 ] φ(S1 ),


φ(V )
0
0
0
 0
φ(V )
0
0 
 , V = A, A∗ , G.
Ψ(V ) = 
 0
0
φ(V )
0 
0
0
0
φ(V )

Similarly, we can simplify the following




0
0
A1
M P Pˆ




0
φT (B)  + 2n − 4r(G) − 4r(G∗ ),
r  PT 0 0  = r  0
e1 φ(B) φ(C)
Pˆ T 0 0
A


−A2
 A1
r(P ) = r 
 A4
−A3

−A3
−A4
A1
A2


−A4
A3 
 + n − 4r(A).
−A2 
A1

Thus we have the results for extreme ranks of the matrix X1 in (a). Similarly, applying
Lemma 2.3 and Lemma 2.4 to (3.6)–(3.12) yields the other results in (a) and (b).
Corollary 3.3. Suppose that the matrix equation (1.1) has a Hermitian solution
over H, then we have the following:
(a) (1.1) has a real symmetric solution X if and only if, for i = 2, 3, 4,


#
"
0
0
Ai
Ai
0
0


0
φT (B) 
2r
ei φ(B) φ(C) = r  0
A
ei φ(B) φ(C)
A


−A2 −A3 −A4
 A1 −A4 A3 
.
+ 2r 
 A4
A1 −A2 
−A3 A2
A1

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

569

Extreme Ranks of (Skew-) Hermitian Solutions

In that case, the real symmetric solution X can be expressed as X = X1 in
(3.5).
(b) All the solutions of (1.1) for X are real symmetric if and only if
r

"

0
e
Ai

0
Ai
φ(B) φ(C)

#

+ 2n = 4r(A) + 4r(G), i = 2, 3, 4.

In that case, the real symmetric solution X can be expressed as X = X1 in
(3.5).
(c) (1.1) has a complex Hermitian solution X if and only if, for i = 3, 4,

2r

"

0
ei
A

Ai
0
φ(B) φ(C)

#



0
0
Ai

0
φT (B)
= r 0
ei φ(B) φ(C)
A

−A2 −A3 −A4
 A1 −A4 A3
+ 2r 
 A4
A1 −A2
−A3 A2
A1








.


In that case, the complex Hermitian solution X can be expressed as X =
X1 + X2 i, where X1 , X2 are expressed as (3.5) and (3.6).
(d) All the solutions of (1.1) for X are complex Hermitian if and only if
r

"

0
e
Ai

Ai
0
φ(B) φ(C)

#

+ 2n = 4r(A) + 4r(G), i = 3, 4.

In that case, the complex Hermitian solution X can be expressed as X =
X1 + X2 i, where X1 , X2 are expressed as (3.5) and (3.6).
(e) (1.1) has a pure imaginary Hermitian solution X if and only if

2r

"

0
e
A1

0
A1
φ(B) φ(C)

#



A1
0
0

0
φT (B)
= r 0
e1 φ(B) φ(C)
A

−A2 −A3 −A4
 A1 −A4 A3
+ 2r 
 A4
A1 −A2
−A3 A2
A1








.


In that case, the pure imaginary Hermitian solution X can be expressed as
X = X2 i + X3 j + X4 k, where X2 , X3 , and X4 are expressed as (3.6), (3.7),
and (3.8).

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

570

Q.W. Wang and J. Jiang

(f ) All the solutions of (1.1) for X are pure imaginary Hermitian if and only if
#
"
A1
0
0
r
e1 φ(B) φ(C) + 2n = 4r(A) + 4r(G).
A

In that case, the pure imaginary Hermitian solution X can be expressed as
X = X2 i + X3 j + X4 k, where X2 , X3 , and X4 are expressed as (3.6), (3.7),
and (3.8).

Using the same method, we can get the corresponding results on Y.
Remark 3.4. Similarly, we can get the corresponding results on the skewHermitian solution of (1.1).
4. Ranks of Hermitian solution to some special cases of (1.1). In this
section, we consider some special cases of (1.1) over C. When B vanishes, (1.1)
becomes (1.2) where A ∈ Cm×n , C ∈ Cm×m . We get the corresponding results on
(1.2) as follows.
Corollary 4.1. Let A = A1 + A2 i ∈ Cm×n , C = C ∗ = C1 + C2 i ∈ Cm×m be
given. Then
(a) The matrix equation (1.2) has a Hermitian solution if and only if the real
matrix equation
·
¸ ·
¸·
¸
¸·
A1 −A2
C1 −C2
X11 X12
AT2
AT1
(4.1)
=
A2 A1
C2 C1
−AT2 AT1
X21 X22
has a symmetric solution over R. In this case, the general Hermitian solution
of (1.2) over C can be written as
(4.2)

X = X1 + X2 i =

1
1 T
(X11 + X22 ) + (X12
− X12 )i,
2
2

T
T
where Xtt = Xtt
, t = 1, 2; and X12
= X21 are the general solutions of (4.1)
over R. Written in an explicit form, X1 , X2 in (4.2) are
·
¸
1
1
V1
T
T
X1 = P1 φ(X0 )P1 + P2 φ(X0 )P2 + [P1 , P2 ] Lφ(A)
V2
2
2
·
¸T
V1
T
+
LTφ(A) [P1 , P2 ] ,
V2
·
¸
1
1
V1
T
T
X2 = P2 φ(X0 )P1 − P1 φ(X0 )P2 − [−P2 , P1 ] Lφ(A)
V2
2
2
·
¸T
V1
T
+
LTφ(A) [−P2 , P1 ] ,
V2

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

Extreme Ranks of (Skew-) Hermitian Solutions

571

where X0 = A† C(A† )∗ , P1 = [In , 0] , P2 = [0, In ] , and V1 and V2 are arbitrary
real matrices with compatible sizes.
(b) Put
©
ª
J1 = X1 ∈ Rn×n | A(X1 + X2 i)A∗ = C ,
©
ª
J2 = X2 ∈ Rn×n | A(X1 + X2 i)A∗ = C .

Then we have the following:
(i) The maximal and minimal ranks of X1 in the Hermitian solution X =
X1 + X2 i to (1.2) are given by




C1 −C2 A1


max r(X1 ) = min n, r  C2
C1 A2  + 2n − 4r(A) ,
X1 ∈J1


0
AT2
AT1


·
¸
C1 −C2 A1
A1


min r(X1 ) = r C2
.
C1 A2 − 2r
X1 ∈J1
A2
0
AT2
AT1
(ii) The maximal and minimal ranks of X2 in the Hermitian solution X =
X1 + X2 i to (1.2) are given by




C1 −C2 A1


max r(X2 ) = min n, r  C2
C1
A2  + 2n − 4r(A) ,
X2 ∈J2


0
AT2 −AT1


·
¸
C1 −C2 A1
A1


min r(X2 ) = r C2
.
C1
A2 − 2r
X2 ∈J2
A2
0
AT2 −AT1
Remark 4.2. Corollary 4.1 is Theorem 2.2 of [13]. Similarly, Theorem 3.2 of
[13] can be regarded as a special case of (1.1) with skew-Hermitian solutions.
Acknowledgment. The authors would like to thank Professor Michael Neumann
and a referee very much for their valuable suggestions and comments, which resulted
in a great improvement of the original manuscript.
REFERENCES

[1] J.K. Baksalary. Nonnegative definite and positive definite solutions to the matrix equation
AXA∗ = B. Linear and Multilinear Algebra, 16:133–139, 1984.
[2] X.W. Chang and J.S. Wang. The symmetric solution of the matrix equations AX + Y A = C,
AXAT + BY B T = C, and (AT XA, B T XB) = (C, D). Linear Algebra Appl., 179:171–189,
1993.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

572

Q.W. Wang and J. Jiang

[3] H. Dai and P. Lancaster. Linear matrix equations from an inverse problem of vibration theory.
Linear Algebra Appl., 246:31–47, 1996.
[4] M. Dehghan and M. Hajarian. An iterative algorithm for the reflexive solutions of the generalized coupled Sylvester matrix equations and its optimal approximation. Appl. Math.
Comput., 202:571–588, 2008.
[5] M. Dehghan and M. Hajarian. Finite iterative algorithms for the reflexive and anti-reflexive
solutions of the matrix equation A1 X1 B1 + A2 X2 B2 = C. Math. Comput. Modelling, 49:
1937–1959, 2009.
[6] M. Dehghan and M. Hajarian. On the reflexive solutions of the matrix equation AXB +CY D =
E. Bull. Korean Math. Soc., 46: 511–519, 2009.
[7] J. Groß. A note on the general Hermitian solution to AXA∗ = B. Bull. Malaysian Math. Soc.,
21:57–62, 1998.
[8] J. Groß. Nonnegtive-definite and positive-definite solution to the matrix equation AXA∗ = Brevisited. Linear Algebra Appl., 321:123–129, 2000.
[9] T.W. Hungerford. Algebra. Spring-Verlag Inc., New York, 1980.
[10] Y.T. Li and W.J. Wu. Symmetric and skew-antisymmetric solutions to systems of real quaternion matrix equations. Comput. Math. Appl., 55:1142–1147, 2008.
[11] A.P. Liao and Z.Z. Bai. The constrained solutions of two matrix equations. Acta Math. Sin.,
(Engl. Ser.), 18:671–678, 2002.
[12] Y. Liu and Y. Tian. More on extremal ranks of the matrix expressions A − BX ± X ∗ B ∗ with
statistical applications. Numer. Linear Algebra Appl., 15:307–325, 2008.
[13] Y. Liu, Y. Tian, and Y. Takane. Ranks of Hermitian and skew-Hermitian solutions to the
matrix equation AXA∗ = B. Linear Algebra Appl., 431:2359–2372, 2009.
[14] G. Marsaglia and G. Styan. Equalities and inequalities for ranks of matrices. Linear Multilinear
Algebra, 2:269–292, 1974.
[15] S.K. Mitra. The matrix equations AX = C, XB = D. Linear Algebra Appl., 59:171–181, 1984.
[16] S.K. Mitra. A pair of simultaneous linear matrix equations A1 XB1 = C1 , A2 XB2 = C2 and
a programming problem. Linear Algebra Appl., 131:107–123, 1990.
[17] J. B. Rosen. Minimum and basic solutions to singular linear systems. J. Soc. Indust. Appl.
Math., 12:15–162, 1964.
[18] Y. Tian. The solvability of two linear matrix equations. Linear Multilinear Algebra, 48:123–147,
2000.
[19] Y. Tian. Ranks of Solutions of the matrix equation AXB = C. Linear Multilinear Algebra ,
51:111–125, 2003.
[20] Y. Tian. Ranks and independence of solutions of the matrix equation AXB + CY D = M. Acta
Math. Univ. Comenian. (N.S.), 1:75–84, 2006.
[21] Y. Tian and Y. Liu. Extremal ranks of some symmetric matrix expressions with applications.
SIAM J. Matrix Anal. Appl., 28:890–905, 2006.
[22] F. Uhlig. On the matrix equation AX = B with applications to the generators of controllability
matrix. Linear Algebra and Appl., 85:203–209, 1987.
[23] Q.W. Wang. A system of matrix equations and a linear matrix equation over arbitrary regular
rings with identity. Linear Algebra Appl., 384:43–54, 2004.
[24] Q.W. Wang. A system of four matrix equations over von Neumann regular rings and its
applications. Acta Math. Sin. (Engl. Ser.), 21:323–334, 2005.
[25] Q.W. Wang. Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix
equations. Comput. Math. Appl., 49:641–650, 2005.
[26] Q.W. Wang. The general solution to a system of real quaternion matrix equations. Comput.
Math. Appl., 49:665–675, 2005.
[27] Q.W. Wang and C.K. Li. Ranks and the least-norm of the general solution to a system of
quaternion matrix equations. Linear Algebra Appl., 430:1626–1640, 2009.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 552-573, August 2010

ELA

http://math.technion.ac.il/iic/ela

Extreme Ranks of (Skew-) Hermitian Solutions

573

[28] Q.W. Wang, G.J. Song, and C.Y. Lin. Extreme ranks of the solution to a consistent system of
linear quaternion matrix equations with an application. Appl. Math. Comput., 189:1517–
1532, 2007.
[29] Q.W. Wang, J.H. Sun and S.Z. Li. Consistency for bi(skew)symmetric solutions to systems
of generalized Sylvester equations over a finite central algebra. Linear Algebra Appl.,
353:169–182, 2002.
[30] Q.W. Wang, Y.G. Tian and S.Z. Li. Roth’s theorems for centroselfconjugate solutions to
systems of matrix equations over a finite dimensional central algebra. Southeast Asian
Bull. Math., 27:929–938, 2004.
[31] Q.W. Wang, J.W. van der Woude, and H.X. Chang. A system of real quaternion matrix
equations with applications. Linear Algebra Appl., 431:2291–2303, 2009.
[32] Q.W. Wang and F. Zhang. The reflexive re-nonnegative definite solution to a quaternion matrix
equation. Electron. J. Linear Algebra, 17:88–101, 2008.
[33] Q.W. Wang, H.S. Zhang, and G.J. Song. A new solvable condition for a pair of generalized
Sylvester equations. Electron. J. Linear Algebra, 18:289–301, 2009.
[34] Q.W. Wang, H.S. Zhang, and S.W. Yu. On solutions to the quaternion matrix equation AXB +
CY D = E. Electron. J. Linear Algebra, 17:343–358, 2008.
[35] Q.W. Wang, Y. Zhou, and Q. Zhang. Ranks of the common solution to six quaternion matrix
equations. Acta Math. Appl. Sin. Engl. Ser., DOI:10.1007/s10255-009-8168-4.
[36] M. Wei and Q. Wang. On rank-constrained Hermitian nonnegative-definite least squares solutions to the matrix equation AXA∗ = B. Int. J. Comput. Math., 84:945–952, 2007.
[37] D. Xie, Z. Zhang, and Z. Liu. Theory and method for updating least-squares finite element
model of symmetric generalized centro-symmetric matrices. J. Comput. Appl. Math.,
216:484–497, 2008.
[38] G. Xu, M. Wei, and D. Zheng. On solution of matrix equation AXB + CY D = F . Linear
Algebra Appl., 279:93–109, 1998.
[39] S. Yuan, A. Liao, and Y. Lei. Least squares Hermitian solution of the matrix equation
(AXB, CXD) = (E, F ) with the least norm over the skew field of quaternions. Math.
Comput. Modelling, 48:91–100, 2008.
[40] X. Zhang. The general Hermitian nonnegative-definite solution to the matrix equation AXA∗ +
BY B ∗ = C. Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 21:33–42, 2005.
[41] X. Zhang and M. Cheng. The rank-constrained Hermitian nonnegtive-definite and positivedefinite solutions to the matrix equation AXA∗ = B. Linear Algebra Appl., 370:163–174,
2003.
[42] B. Zheng, L. Ye, and Dragana S. Cvetkovi´
c-Ili´
c. The *congruence class of the solutions of some
matrix equations. Comput. Math. Appl., 57:540–549, 2009.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52