Paper-2-Acta23.2010. 141KB Jun 04 2011 12:03:12 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 23/2010
pp. 21-38

NEW EXACT TRAVELING WAVE SOLUTIONS FOR THE
KAWAHARA AND MODIFIED KAWAHARA EQUATIONS BY
USING MODIFIED TANH-COTH METHOD

A. Jabbari, H. Kheiri
Abstract. In this paper we use the modified tanh-coth method to solve the
Kawahara and the modified Kawahara equations. New multiple traveling wave solutions are obtained for the Kawahara and the modified Kawahara equations.
2000 Mathematics Subject Classification: 35K01; 35J05.
1. Introduction
The world around us is inherently nonlinear. Nonlinear evolution equations
(NEEs) are widely used as models to describe complex physical phenomena in various
fields of sciences, especially in fluid mechanics, solid state physics, plasma physics,
plasma wave and chemical physics. Particularly, various methods have been utilized
to explore different kinds of solutions of physical models described by nonlinear
PDEs. One of the basic physical problems for those models is to obtain their traveling wave solutions. Concepts like solitons, peakons, kinks, breathers, cusps and

compactons are now being thoroughly investigated in the scientific literature [1-3].
During the past decades, quite a few methods for obtaining explicit traveling and
solitary wave solutions of nonlinear evolution equations have proposed a variety of
powerful methods, such as, Painleve expansion method [4], Jacobi elliptic function
method [5], Hirota’s bilinear method [6], the Sine-Cosine function method [7], the
Exp-function method [8], the tanh method [9, 10] and so on. Among those, the
tanh method, established by Malfliet [9], uses a particularly straightforward and
effective algorithm to obtain solutions for a large numbers of nonlinear PDEs. In
recent years, much research work has been concentrated on the various extensions
and applications of the tanh method. Fan [11, 12] has proposed an extended tanh
method and obtained new traveling wave solutions that cannot be obtained by the
tanh method. Recently, Wazwaz extended the tanh method and call it first the

21

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...

extended tanh method [13-15] and later as the tanh-coth method [16]. Most recently, El-Wakil [17, 18] and Soliman [19] modified the extended tanh method (the
tanh-coth method) and obtained new solutions for some nonlinear PDEs. The goal
of this work is to implement the tanh-coth method and the Riccati equation in [20]

that named modified tanh-coth method, to obtain more new exact travelling wave
solutions of the Kawahara and the modefied Kawahara equations. The Kawahara
equation occurs in the theory of magneto-acoustic waves in a plasmas and in theory of shallow water waves with surface tension. This equation was proposed by
Kawahara in 1972, as a model equation describing solitary-wave propagation in media [21]. In the literature this equation is also referred as fifth-order KdV equation
or singularly perturbed KdV equation [22]. The modified Kawahara equation was
proposed first by Kawahara [21] as an important dispersive equation. This equation
is also called the singularly perturbed KdV equation. This equation arises in the
theory of shallow water waves.
2.Description of modified tanh-coth method
Consider the general nonlinear wave PDE
ut = G(u, ux , uxx , ...) = 0.

(1)

In order to apply the tanh-coth method, the independent variables, x and t, are
combined into a new variable ξ = µ(x − ct), where µ and c are undetermined
parameters which represent the wave number and velocity of the traveling wave,
respectively. Therefore, u(x, t) is replaced by u(ξ), which defines the traveling wave
solutions of (1). Equations such as (1) are then transformed into
−µc


du
d2 u
du
= G(u, k , µ2 2 , ...).




(2)

Hence, under the transformation ξ = µ(x − ct), the PDE in (1) has been reduced
to an ordinary differential equation (ODE) given by (2). The resulting ODE is then
solved by the modified tanh-coth method, which admits the use of a finite series of
functions of the form
u(x, t) = u(ξ) = a0 +

N
X


[aj Y j (ξ) + bj Y −j (ξ)],

(3)

j=1

and the Riccati equation
Y ′ = α + βY + γY 2 ,

(4)

where α, β and γ are constants to be prescribed later. The parameter N in (3) is
a positive constant that can be determined by balancing the linear term of highest
22

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...

order with the nonlinear term in (2). substituting (3) into the ODE in (2) and using
(4), we obtain an algebraic equation in powers of Y. Since all coefficients of Y j must
vanish. This will give a system of algebraic equations with respect to parameters

ai , bi , µ and c. With the aid of Maple, we can determine ai , bi , µ and c. We will
consider the following special solutions of the Riccati equation (4) are given in [23] by
• α = β = 1, γ = 0, Y (ξ) = eξ − 1,
1
1
• α = , γ = − , β = 0, Y (ξ) = coth(ξ) ± csch(ξ) or Y (ξ) = tanh(ξ) ± isech(ξ),
2
2
1
• α = γ = ± , β = 0, Y (ξ) = sec(ξ) ± tan(ξ) or Y (ξ) = csc(ξ) ∓ cot(ξ),
2
• α = 1, γ = −1, β = 0, Y (ξ) = tanh(ξ) or Y (ξ) = coth(ξ),

• α = γ = ±1, β = 0, Y (ξ) = tan(ξ) or Y (ξ) = cot(ξ),
tanh(ξ)
• α = 1, γ = −4, β = 0, Y (ξ) =
,
1 + tanh2 (ξ)
tan(ξ)
• α = 1, γ = 4, β = 0, Y (ξ) =

,
1 − tan2 (ξ)
cot(ξ)
• α = −1, γ = −4, β = 0, Y (ξ) =
,
1 − cot2 (ξ)
tan(ξ)
,
• α = 1, β = ±2, γ = 2, Y (ξ) =
1 ∓ tan(ξ)
cot(ξ)
• α = −1, β = ±2, γ = −2, Y (ξ) =
.
1 ± cot(ξ)

(5)

Other values for Y can be derived for other arbitrary values for α, β and γ.
3.The Kawahara equation
Let us first consider the Kawahara equation which has the form

ut + auux + buxxx − kuxxxxx = 0,

(6)

where a, b and k are nonzero real constants. In order to obtain travelling wave
solutions for Eq. (6), we use
u(x, t) = u(ξ),

ξ = µ(x − ct).

(7)

Substituting (7) into (6), we obtain
−cu′ + auu′ + bµ2 u′′′ − kµ4 u(5) = 0,
23

(8)

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...


and by once time integrating we find
a
−cu + u2 + bµ2 u′′ − kµ4 u(4) = 0.
2

(9)

Balancing the order of the nonlinear term u2 with the highes order linear term u(4)
in (9), we obtain N=4.
Thus, the solution of (3) has the form
u(ξ) = a0 + a1 Y + a2 Y 2 + a3 Y 3 + a4 Y 4 + b1 Y −1 + b2 Y −2 + b3 Y −3 + b4 Y −4 . (10)
Substituting (10) into (9) and using the Riccati equation (4), and because all
coefficients of Y i have to vanish, we obtain a system of algebraic equations in the
unknowns a0 , a1 , a2 , a3 , a4 , b1 , b2 , b3 , b4 , α, β, γ, µ and c of the following form:
1
ab4 2 − 840kµ4 b4 α4 = 0,
2
ab3 b4 − 360kµ4 b3 α4 − 2640kµ4 b4 βα3 = 0,
1
ab3 2 + ab2 b4 + 20bµ2 b4 α2 − 120kµ4 b2 α4 − 1080kµ4 b3 βα3 − 3020kµ4 b4 β 2 α2

2
−2080kµ4 b4 γα3 = 0,
ab1 b4 + ab2 b3 + 12bµ2 b3 α2 + 36bµ2 b4 βα − 336kµ4 b2 βα3 − 24kµ4 b1 α4

−1164kµ4 b3 β 2 α2 − 816kµ4 b3 γα3 − 1476kµ4 b4 β 3 α − 4608kµ4 b4 βγα2 = 0,
1
−cb4 + ab2 2 + ab1 b3 + ab4 a0 + 6bµ2 b2 α2 + 16bµ2 b4 β 2 + 21bµ2 b3 βα + 32bµ2 b4 γα
2
4
−60kµ b1 βα3 − 330kµ4 b2 β 2 α2 − 240kµ4 b2 γα3 − 1680kµ4 b3 βγα2 − 525kµ4 b3 β 3 α
−256kµ4 b4 β 4 − 3232kµ4 b4 β 2 γα − 1696kµ4 b4 γ 2 α2 = 0,

−cb3 + aa1 b4 + ab1 b2 + ab3 a0 + 9bµ2 b3 β 2 + 2bµ2 b1 α2 + 10bµ2 b2 βα + 18bµ2 b3 γα
+28bµ2 b4 βγ − 50kµ4 b1 β 2 α2 − 40kµ4 b1 γα3 − 130kµ4 b2 β 3 α − 440kµ4 b2 βγα2

−81kµ4 b3 β 4 − 576kµ4 b3 γ 2 α2 − 1062kµ4 b3 β 2 γα − 2240kµ4 b4 βγ 2 α − 700kµ4 b4 β 3 γ

= 0,

1

−cb2 + ab1 2 + aa1 b3 + aa2 b4 + ab2 a0 + 4bµ2 b2 β 2 + 12bµ2 b4 γ 2 + 3bµ2 b1 βα
2
+8bµ2 b2 γα + 15bµ2 b3 βγ − 15kµ4 b1 β 3 α − 136kµ4 b2 γ 2 α2 − 60kµ4 b1 βγα2

−232kµ4 b2 β 2 γα − 16kµ4 b2 β 4 − 195kµ4 b3 β 3 γ − 660kµ4 b3 βγ 2 α − 660kµ4 b4 β 2 γ 2
−480kµ4 b4 γ 3 α = 0,

(11)

24

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...

−cb1 + aa3 b4 + aa1 b2 + aa2 b3 + ab1 a0 + bµ2 b1 β 2 + 6bµ2 b3 γ 2 + 2bµ2 b1 γα
2

4

2 2


4

3

4

2

4

+6bµ b2 βγ − 16kµ b1 γ α − 30kµ b2 β γ − 22kµ b1 β γα − kµ b1 β

(12)

4

−120kµ4 b2 βγ 2 α − 150kµ4 b3 β 2 γ 2 − 120kµ4 b3 γ 3 α − 240kµ4 b4 βγ 3 = 0,
1
−ca0 + 2bµ2 a2 α2 + 2bµ2 b2 γ 2 − 24kµ4 a4 α4 − 24kµ4 b4 γ 4 + aa1 b1 + aa0 2
2
+aa2 b2 + aa3 b3 + aa4 b4 + bµ2 a1 βα + bµ2 b1 βγ − kµ4 b1 β 3 γ − 14kµ4 b2 β 2 γ 2

−16kµ4 b2 γ 3 α − 14kµ4 a2 β 2 α2 − 8kµ4 b1 βγ 2 α − 36kµ4 b3 βγ 3 − 8kµ4 a1 βγα2
−kµ4 a1 β 3 α − 16kµ4 a2 γα3 − 36kµ4 a3 α3 β = 0,

−ca1 − kµ4 a1 β 4 + aa1 a0 + aa2 b1 + aa3 b2 + aa4 b3 + bµ2 a1 β 2 + 6bµ2 a3 α2

+2bµ2 a1 γα + 6bµ2 a2 βα − 240kµ4 a4 βα3 − 150kµ4 a3 β 2 α2 − 120kµ4 a3 γα3

−30kµ4 a2 β 3 α − 120kµ4 a2 γα2 β − 16kµ4 a1 γ 2 α2 − 22kµ4 a1 β 2 γα = 0,
1
−ca2 + aa1 2 + aa2 a0 + aa3 b1 + aa4 b2 + 4bµ2 a2 β 2 + 12bµ2 a4 α2 + 3bµ2 a1 βγ
2
+8bµ2 a2 γα + 15bµ2 a3 βα − 660kµ4 a4 β 2 α2 − 480kµ4 a4 γα3 − 195kµ4 a3 β 3 α

−660kµ4 a3 γα2 β − 136kµ4 a2 γ 2 α2 − 16kµ4 a2 β 4 − 232kµ4 a2 β 2 γα − 15kµ4 a1 β 3 γ
−60kµ4 a1 βγ 2 α = 0,

−ca3 + aa4 b1 + aa1 a2 + aa3 a0 + 2bµ2 a1 γ 2 + 9bµ2 a3 β 2 + 10bµ2 a2 βγ + 18bµ2 a3 γα
+28bµ2 a4 βα − 700kµ4 a4 β 3 α − 2240kµ4 a4 βγα2 − 81kµ4 a3 β 4 − 576kµ4 a3 γ 2 α2

−1062kµ4 a3 β 2 γα − 130kµ4 a2 β 3 γ − 440kµ4 a2 βγ 2 α − 50kµ4 a1 β 2 γ 2 − 40kµ4 a1 γ 3 α = 0,
1
−ca4 + aa2 2 + aa1 a3 + aa4 a0 + 6bµ2 a2 γ 2 + 16bµ2 a4 β 2 + 21bµ2 a3 βγ + 32bµ2 a4 γα
2
−1696kµ4 a4 γ 2 α2 − 256kµ4 a4 β 4 − 3232kµ4 a4 β 2 γα − 525kµ4 a3 β 3 γ − 1680kµ4 a3 βγ 2 α
−330kµ4 a2 β 2 γ 2 − 240kµ4 a2 γ 3 α − 60kµ4 a1 βγ 3 = 0,

aa2 a3 + aa1 a4 + 12bµ2 a3 γ 2 + 36bµ2 a4 βγ − 1476kµ4 a4 β 3 γ − 4608kµ4 a4 βγ 2 α

−1164kµ4 a3 β 2 γ 2 − 816kµ4 a3 γ 3 α − 336kµ4 a2 βγ 3 − 24kµ4 a1 γ 4 = 0,
1
aa3 2 + aa2 a4 + 20bµ2 a4 γ 2 − 3020kµ4 a4 β 2 γ 2 − 2080kµ4 a4 γ 3 α − 1080kµ4 a3 βγ 3
2
−120kµ4 a2 γ 4 = 0,
aa3 a4 − 2640kµ4 a4 βγ 3 − 360kµ4 a3 γ 4 = 0,
1
aa4 2 − 840kµ4 a4 γ 4 = 0.
2

Case (1): By seting α = β = 1 and γ = 0 in (11) and solving the resulting system,

25

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...

we obtain the following two sets of solutions:
1680b2
3360b2
• a0 = a1 = a2 = a3 = a4 = 0, b1 = 0, b2 =
, b3 =
,
169ka
169ka
r
b
36b2
b
1680b2
, c=
, µ=±
,
> 0,
b4 =
169ka
169k
13k k
1680b2
3360b2
−72b2
, a1 = a2 = a3 = a4 = 0, b1 = 0, b2 =
, b3 =
,
• a0 =
169ka
169ka
169ka
r
1680b2
b
−36b2
b
b4 =
, c=
, µ=±
,
> 0.
169ka
169k
13k k
Substituting these values and Y = eξ − 1 in (10), after some simplifications, we
obtain
36b2
e2µ(x− 169k t)
1680kµ4
,
(13)
u1 (x, t) =
36b2
a
(eµ(x− 169k t) − 1)4
and

36b2

36b2

36b2

36b2

24kµ4 −3e4µ(x+ 169k t) + 12e3µ(x+ 169k t) + 52e2µ(x+ 169k t) + 12eµ(x+ 169k t) − 3
u2 (x, t) =
,
36b2
a
(eµ(x+ 169k t) − 1)4
(14)
q

b
, kb > 0.
where µ = ± 13k
Case (2): By assuming α = 1/2, γ = −1/2 and β = 0 in (11) and solving the
obtained system and Substituting it’s solution and Y = coth(ξ) ± csch(ξ) or Y =
tanh(ξ) ± isech(ξ), in (10), we we have

105b2
[1 − 2(coth(ξ) ± csch(ξ))2 + (coth(ξ) ± csch(ξ))4 ], (15)
169ka
105b2
u4 (x, t) =
[1 − 2(tanh(ξ) ± isech(ξ))2 + (tanh(ξ) ± isech(ξ))4 ], (16)
169ka
q
2t
b
b
(x − 36b
where ξ = 13k
169k ), k > 0.
u3 (x, t) =

b2
[33 − 210(coth(ξ) ± csch(ξ))2 + 105(coth(ξ) ± csch(ξ))4 ],(17)
169ka
b2
4
[33 − 210(tanh(ξ) ± isech(ξ))2 + 105(tanh(ξ) ± isech(ξ))(18)
],
u6 (x, t) =
169ka

u5 (x, t) =

26

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...

where ξ =

q

b
13k (x

+

36b2 t
b
169k ), k

> 0.

105b2
[1 − 2(coth(ξ) ± csch(ξ))−2 + (coth(ξ) ± csch(ξ))−4 ], (19)
169ka
105b2
[1 − 2(tanh(ξ) ± isech(ξ))−2 + (tanh(ξ) ± isech(ξ))−4 ],(20)
u8 (x, t) =
169ka
q
2t
b
b
where ξ = 13k
(x − 36b
169k ), k > 0.
u7 (x, t) =

b2
[33 − 210(coth(ξ) ± csch(ξ))−2 + 105(coth(ξ) ± csch(ξ))−4 ],(21)
169ka
b2
−4
[33 − 210(tanh(ξ) ± isech(ξ))−2 + 105(tanh(ξ) ± isech(ξ))(22)
],
u10 (x, t) =
169ka
q
2t
b
b
(x + 36b
where ξ = 13k
169k ), k > 0.
Case (3): By solving (11) for α = γ = ±1/2 and β = 0, and Substituting obtained
values and Y = sec(ξ) ± tan(ξ) or Y = csc(ξ) ∓ cot(ξ), in (10), we get
u9 (x, t) =

105b2
[1 + 2(sec(ξ) ± tan(ξ))2 + (sec(ξ) ± tan(ξ))4 ],
169ka
105b2
u12 (x, t) =
[1 + 2(csc(ξ) ∓ cot(ξ))2 + (csc(ξ) ∓ cot(ξ))4 ],
169ka
q
2t
b
−b
where ξ = 13k
(x − 36b
169k ), k < 0.
u11 (x, t) =

(23)
(24)

b2
[33 + 210(sec(ξ) ± tan(ξ))2 + 105(sec(ξ) ± tan(ξ))4 ], (25)
169ka
b2
[33 + 210(csc(ξ) ∓ cot(ξ))2 + 105(csc(ξ) ∓ cot(ξ))4 ], (26)
u14 (x, t) =
169ka
q
2t
b
−b
where ξ = 13k
(x + 36b
169k ), k < 0.
u13 (x, t) =

105b2
[1 + 2(sec(ξ) ± tan(ξ))−2 + (sec(ξ) ± tan(ξ))−4 ],
169ka
105b2
[1 + 2(csc(ξ) ∓ cot(ξ))−2 + (csc(ξ) ∓ cot(ξ))−4 ],
u16 (x, t) =
169ka
q
2t
b
−b
where ξ = 13k
(x − 36b
169k ), k < 0.
u15 (x, t) =

(27)
(28)

b2
[33 + 210(sec(ξ) ± tan(ξ))−2 + 105(sec(ξ) ± tan(ξ))−4 ],(29)
169ka
b2
u18 (x, t) =
[33 + 210(csc(ξ) ∓ cot(ξ))−2 + 105(csc(ξ) ∓ cot(ξ))−4 ],(30)
169ka

u17 (x, t) =

27

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...
q
2t
b
−b
where ξ = 13k
(x + 36b
169k ), k < 0.
Case (4): Let α = 1, γ = −1 and β = 0. By solving (11) and Substituting it’s
solutions and Y = tanh(ξ) or Y = coth(ξ), in (10), we obtain
u19 (x, t) =
where ξ =

1
2

q

b
13k (x



36b2 t
b
169k ), k

u20 (x, t) =
where ξ =

1
2

q

b
13k (x

+

105b2
[1 − 2 tanh2 (ξ) + tanh4 (ξ)],
169ka

u21 (x, t) =
where ξ =

1
2

q

b
13k (x



36b2 t
b
169k ), k

u22 (x, t) =
q

> 0.

3b2
[11 − 70 tanh2 (ξ) + 35 tanh4 (ξ)],
169ka

36b2 t
b
169k ), k

(31)

(32)

> 0.
105b2
[1 − 2 coth2 (ξ) + coth4 (ξ)],
169ka

(33)

> 0.

3b2
[11 − 70 coth2 (ξ) + 35 coth4 (ξ],
169ka

(34)

2

36b t
b
b
where ξ =
13k (x + 169k ), k > 0.
The solutions (32) and (34) are same Eq. (33) and Eq. (34) in [24] respectively.
Case(5): By considering α = γ = ±1, and β = 0 in (11) and solving the resulting
system, we obtain unknown variables. By Substituting these values and Y = tan(ξ)
or Y = cot(ξ), in (10) we derive
1
2

u23 (x, t) =
where ξ =

1
2

q

−b
13k (x



36b2 t
b
169k ), k

u24 (x, t) =
where ξ =

1
2

q

−b
13k (x

+

105b2
(1 + 2 tan2 (ξ) + tan4 (ξ)),
169ka
< 0.

3b2
(11 + 70 tan2 (ξ) + 35 tan4 (ξ)),
169ka

36b2 t
b
169k ), k

u25 (x, t) =

(35)

(36)

< 0.
105b2
(1 + 2 cot2 (ξ) + cot4 (ξ)),
169ka

28

(37)

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...

where ξ =

1
2

q

−b
13k (x



36b2 t
b
169k ), k

u26 (x, t) =

< 0.

3b2
(11 + 70 cot2 (ξ) + 35 cot4 (ξ)).
169ka

(38)

q
2t
−b
b
where ξ = 12 13k
(x + 36b
169k ), k < 0.
The solutions (36) and (38) are same Eq. (35) and Eq. (36) in [24] respectively.
Case (6): By letting α = 1, γ = −4, and β = 0 in (11) and solving the resulttanh(ξ)
, in (10), after some
ing system and Substituting it’s solutions and Y = 1+tanh
2
(ξ)
simplifications, we get
u27 (x, t) =
where ξ =

1
4

u28 (x, t) =
where ξ =

1
4

q

105b2 (1 − 4 tanh2 (ξ) + 6 tanh4 (ξ) − 4 tanh6 (ξ) + tanh8 (ξ))
,
169ka
(1 + tanh2 (ξ))4
b
13k (x



36b2 t
b
169k ), k

(39)

> 0.

3b2 (11 − 236 tanh2 (ξ) + 66 tanh4 (ξ) − 236 tanh6 (ξ) + 11 tanh8 (ξ))
,
169ka
(1 + tanh2 (ξ))4
(40)
q
b
13k (x

+

36b2 t
b
169k ), k

> 0.

105b2
u29 (x, t) =
(6 − 4 coth2 (ξ) − 4 tanh2 (ξ) + coth4 (ξ) + tanh4 (ξ)),
2704ka
q
2t
b
b
(x − 36b
where ξ = 14 13k
169k ), k > 0.

(41)

3b2
(−174 − 140 coth2 (ξ) − 140 tanh2 (ξ) + 35 coth4 (ξ) + 35 tanh4 (ξ)).
2704ka
(42)
q
1
36b2 t
b
b
where ξ = 4 13k (x + 169k ), k > 0.
The solutions (41) and (42) are same Eq. (44) and Eq. (47) in [24] respectively.
Case (7): By solving (11) for α = 1, γ = 4, and β = 0 we obtain unknown variables.
tan(ξ)
By Substituting these values and Y = 1−tan
2 (ξ) , in (10), after some simplifications,
we get
u30 (x, t) =

u31 (x, t) =
where ξ =

1
4

u32 (x, t) =

q

105b2 (1 + 4 tan2 (ξ) + 6 tan4 (ξ) + 4 tan6 (ξ) + tan8 (ξ))
,
169ka
(−1 + tan2 (ξ))4

−b
13k (x



36b2 t
b
169k ), k

(43)

< 0.

3b2 (11 + 236 tan2 (ξ) + 66 tan4 (ξ) + 236 tan6 (ξ) + 11 tan8 (ξ))
, (44)
169ka
(−1 + tan2 (ξ))4
29

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...

where ξ =

1
4

q

−b
13k (x

+

36b2 t
b
169k ), k

< 0.

105b2
u33 (x, t) =
(6 + 4 cot2 (ξ) + 4 tan2 (ξ) + cot4 (ξ) + tan4 (ξ)),
2704ka
q
2t
b
−b
where ξ = 14 13k
(x − 36b
169k ), k < 0.

(45)

3b2
(−174 + 140 cot2 (ξ) + 140 tan2 (ξ) + 35 cot4 (ξ) + 35 tan4 (ξ)). (46)
2704ka
q
2t
b
−b
where ξ = 14 13k
(x + 36b
169k ), k < 0.
The solutions (45) and (46) are same Eq. (45) and Eq. (48) in [24] respectively.
Case (8): By letting α = −1, γ = −4 and β = 0 in (11) and solving the resulting
cot(ξ)
system and Substituting it’s solutions and Y = 1−cot
2 (ξ) in (10) we have
u34 (x, t) =

105b2 (1 + 4 cot2 (ξ) + 6 cot4 (ξ) + 4 cot6 (ξ) + cot8 (ξ))
,
169ka
(−1 + cot2 (ξ))4

u35 (x, t) =
where ξ =

1
4

q

−b
13k (x



36b2 t
b
169k ), k

(47)

< 0.

3b2 (11 + 236 cot2 (ξ) + 66 cot4 (ξ) + 236 cot6 (ξ) + 11 cot8 (ξ))
,
169ka
(−1 + cot2 (ξ))4
q
2t
b
−b
(x + 36b
where ξ = 14 13k
169k ), k < 0.
u36 (x, t) =

105b2
u37 (x, t) =
(6 + 4 tan2 (ξ) + 4 cot2 (ξ) + tan4 (ξ) + cot4 (ξ)),
2704ka
q
2t
b
−b
(x − 36b
where ξ = 14 13k
169k ), k < 0.

(48)

(49)

3b2
(−174 + 140 tan2 (ξ) + 140 cot2 (ξ) + 35 tan4 (ξ) + 35 cot4 (ξ)). (50)
2704ka
q
2t
b
−b
where ξ = 41 13k
(x + 36b
169k ), k < 0.
The solutions (49) and (50) are same Eq. (45) and Eq. (48) in [24] respectively.
Case (9): By solving (11) for α = 1, β = ∓2 and γ = 2 Substituting these values
tan(ξ)
, in (10) and after some simplifications, we get
and Y = 1±tan(ξ)
u38 (x, t) =

u39 (x, t) =

420b2 (1 + 2 tan2 (ξ) + tan4 (ξ))
,
169ka
(±1 + tan(ξ))4

30

(51)

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...

where ξ =

1
2

q

u40 (x, t) =
where ξ =

1
2

q

−b
13k (x



36b2 t
b
169k ), k

12b2 (29 ∓ 24 tan(ξ) + 34 tan2 (ξ) ∓ 24 tan3 (ξ) + 29 tan4 (ξ))
,
169ka
(±1 + tan(ξ))4
−b
13k (x

+

36b2 t
b
169k ), k

u41 (x, t) =
where ξ =

1
2

q

< 0.

−b
13k (x



36b2 t
b
169k ), k

u42 (x, t) =
q

(52)

< 0.
105b2
(1 + 2 cot2 (ξ) + cot4 (ξ)),
169ka

(53)

< 0.

3b2
(11 + 70 cot2 (ξ) + 35 cot4 (ξ)).
169ka

(54)

2

−b
t
b
(x + 36b
where ξ = 12 13k
169k ), k < 0.
The solution (54) is same Eq. (36) in [24].
Case (10): By assuming α = −1, β = ±2 and γ = −2 in (11) and solving the
cot(ξ)
in (10), after
obtained system, then Substituting it’s solutions and Y = 1±cot(ξ)
some simplifications, we obtain

u43 (x, t) =
where ξ =

1
2

q

u44 (x, t) =
where ξ =

1
2

q

−b
13k (x



36b2 t
b
169k ), k

−b
13k (x

+

36b2 t
b
169k ), k

1
2

q

−b
13k (x



36b2 t
b
169k ), k

u46 (x, t) =

(55)

< 0.

12b2 (29 ∓ 24 cot(ξ) + 34 cot2 (ξ) ∓ 24 cot3 (ξ) + 29 cot4 (ξ))
,
169ka
(±1 + cot(ξ))4

u45 (x, t) =
where ξ =

420b2 (1 + 2 cot2 (ξ) + cot4 (ξ))
,
169ka
(±1 + cot(ξ))4

(56)

< 0.
105b2
(1 + 2 tan2 (ξ) + tan4 (ξ)),
169ka

(57)

< 0.

3b2
(11 + 70 tan2 (ξ) + 35 tan4 (ξ)).
169ka

(58)

q
2t
b
−b
where ξ = 12 13k
(x + 36b
169k ), k < 0.
The solution (58) is same Eq. (35) in [24].
Not only our solutions cover all results obtained by wazwaz in [24], but also other
new solutions appear.
31

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...

4.The modified Kawahara equation
Let us consider the modified Kawahara equation
ut + au2 ux + buxxx − kuxxxxx = 0,

(59)

where a, b and k are nonzero real constants. In order to obtain traveling wave
solutions for Eq. (59), we use
u(x, t) = u(ξ),

ξ = µ(x − ct),

(60)

Substituting (60) into (59), we obtain
−cu′ + au2 u′ + bµ2 u′′′ − kµ4 u(5) = 0,

(61)

by once time integrating we find
a
−cu + u3 + bµ2 u′′ − kµ4 u(4) = 0.
3

(62)

Balancing the order of the nonlinear term u3 with the highest order linear term u(4)
in (62), we obtain N=2.
Thus, the solution of (3) has the form
u(ξ) = a0 + a1 Y + a2 Y 2 + b1 Y −1 + b2 Y −2 .

(63)

Substituting (63) into (62) and using the Riccati equation (4), and because all
coefficients of Y i have to vanish, we obtain a system of algebraic equations in the
unknowns a0 , a1 , a2 , b1 , b2 , α, β, γ, µ and c of the following form:
1
ab2 3 − 120kµ4 b2 α4 = 0,
3
ab1 b2 2 − 24kµ4 b1 α4 − 336kµ4 b2 βα3 = 0,

ab1 2 b2 + ab2 2 a0 + 6bµ2 b2 α2 − 60kµ4 b1 βα3 − 330kµ4 b2 β 2 α2 − 240kµ4 b2 γα3 = 0,
1
ab1 3 + aa1 b2 2 + 2ab1 b2 a0 + 10bµ2 b2 βα + 2bµ2 b1 α2 − 50kµ4 b1 β 2 α2 − 40kµ4 b1 γα3
3
−130kµ4 b2 β 3 α − 440kµ4 b2 βγα2 = 0,
aa2 b2 2 + ab1 2 a0 + ab2 a0 2 − cb2 + 2aa1 b1 b2 + 3bµ2 b1 βα + 8bµ2 b2 γα + 4bµ2 b2 β 2

−16kµ4 b2 β 4 − 15kµ4 b1 β 3 α − 60kµ4 b1 βγα2 − 136kµ4 b2 γ 2 α2 − 232kµ4 b2 β 2 γα = 0,
aa1 b1 2 + ab1 a0 2 − cb1 + 2aa1 b2 a0 + 2aa2 b1 b2 + 2bµ2 b1 γα + 6bµ2 b2 βγ + bµ2 b1 β 2
−16kµ4 b1 γ 2 α2 − 22kµ4 b1 β 2 γα − kµ4 b1 β 4 − 30kµ4 b2 β 3 γ − 120kµ4 b2 βγ 2 α = 0,

32

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...

1
−ca0 + aa0 3 + 2aa1 b1 a0 + 2aa2 b2 a0 + aa2 b1 2 + aa1 2 b2 + 2bµ2 a2 α2 + 2bµ2 b2 γ 2
3
+bµ2 b1 βγ + bµ2 a1 βα − kµ4 a1 β 3 α − 14kµ4 a2 β 2 α2 − 16kµ4 a2 γα3 − 8kµ4 a1 βγα2
−kµ4 b1 β 3 γ − 8kµ4 b1 βγ 2 α − 14kµ4 b2 β 2 γ 2 − 16kµ4 b2 γ 3 α = 0,
2

2

2

(64)

2

2

aa1 b1 + aa1 a0 − ca1 + 2aa1 a2 b2 + 2aa2 b1 a0 + 2bµ a1 γα + 6bµ a2 βα + bµ a1 β 2
−22kµ4 a1 β 2 γα − kµ4 a1 β 4 − 16kµ4 a1 γ 2 α2 − 30kµ4 a2 β 3 α − 120kµ4 a2 γα2 β = 0,

aa1 2 a0 + aa2 2 b2 + aa2 a0 2 − ca2 + 2aa1 a2 b1 + 3bµ2 a1 βγ + 8bµ2 a2 γα + 4bµ2 a2 β 2

−15kµ4 a1 β 3 γ − 16kµ4 a2 β 4 − 60kµ4 a1 βγ 2 α − 136kµ4 a2 γ 2 α2 − 232kµ4 a2 β 2 γα = 0,
1
aa2 2 b1 + aa1 3 + 2aa1 a2 a0 + 10bµ2 a2 βγ + 2bµ2 a1 γ 2 − 50kµ4 a1 β 2 γ 2 − 40kµ4 a1 γ 3 α
3
4
−130kµ a2 β 3 γ − 440kµ4 a2 βγ 2 α = 0,
aa1 2 a2 + aa2 2 a0 + 6bµ2 a2 γ 2 − 60kµ4 a1 βγ 3 − 330kµ4 a2 β 2 γ 2 − 240kµ4 a2 γ 3 α = 0,

aa1 a2 2 − 24kµ4 a1 γ 4 − 336kµ4 a2 βγ 3 = 0,
1
aa2 3 − 120kµ4 a2 γ 4 = 0.
3

Case (1): By assuming α = β = 1 and γ = 0 in (64), and solving the resulting
system, we obtain
r
b
b
4b2
12b
, µ=±
,
> 0.
• a0 = a1 = a2 = 0, b1 = b2 = ∓ √
, c=
25k
5k k
10ka
Substituting these values and Y = eξ − 1 in (63), after some simplifications, we
obtain
q
2
12b
u1 (x, t) = ∓ √
10ka

±

e

±

(e

q

b
4b
(x− 25k
t)
5k

b
4b2
(x− 25k
t)
5k

.

(65)

− 1)2

Case (2): By considering α = 21 , γ = − 12 , and β = 0 in (64) and solving the obtained
system and Substituting it’s solution and Y = coth ξ ± cschξ or Y = tanh ξ ± isechξ
in (63), after some simplifications, we have
2

u2 (x, t) = ∓ √

4b
t)))
6b (1 ± cosh(µ(x − 25k
,
2
4b
10ka sinh2 (µ(x − 25k
t))

(66)

2

u3 (x, t) = ± √

4b
t)))
6b (1 ∓ i sinh(µ(x − 25k
,
2
4b
10ka cosh2 (µ(x − 25k
t))

33

(67)

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...

u4 (x, t) = ± √
u5 (x, t) = ± √
where µ =

q

b
b
5k , k

6b
1
10ka (1 ± cosh(µ(x −

4b2
25k t)))

,

(68)
2

4b
(i sinh(µ(x − 25k
t)) ∓ 1)
6b
4b2
10ka (2i sinh(µ(x − 25k t)) ∓ 2 ± cosh2 (µ(x −

4b2
25k t)))

, (69)

> 0.

Case (3): by solving (64) for α = γ = ± 12 , and β = 0 we obtain unknown variables.
By substituting these values and Y = sec ξ ± tanξ or Y = csc ξ ∓ cot ξ in (63), after
some simplifications, we derive
1
6b
,
4b2
10ka (1 ∓ sin(µ(x − 25k
t)))
6b
1
u7 (x, t) = ± √
,
4b2
10ka (1 ± cos(µ(x − 25k
t)))
u6 (x, t) = ± √

(70)
(71)

q
b
where µ = −b
5k , k < 0.
The solution (69) is same Eq. (43) in [25].
Case (4): By letting α = 1, γ = −1, and β = 0 in (64) and solving the resulting
system and Substituting it’s solution and Y = tanh ξ or Y = coth(ξ) in (63), after
some straightforward computations, we obtain
3b
4b2
t)),
sech2 (µ(x −
25k
10ka
3b
4b2
u9 (x, t) = ∓ √
t)),
csch2 (µ(x −
25k
10ka
u8 (x, t) = ± √

(72)
(73)

q
b
, kb > 0.
where µ = 12 5k
The solution (71) and (72) are same Eq. (23) and Eq. (30) in [25] respectively.
Case (5): By assuming α = γ = ±1, and β = 0 in (64) and solving the resulting
system and Substituting obtained values and Y = tan(ξ) and Y = cot(ξ) in (63),
after some simplifications, we get
3b
4b2
sec2 (µ(x −
t)),
25k
10ka
4b2
3b
csc2 (µ(x −
t)),
u11 (x, t) = ± √
25k
10ka

u10 (x, t) = ± √

1
2

q

−b b
where µ =
5k , k < 0.
The solution (73) and (74) are same Eq. (21) and Eq. (32) in [25] respectively.

34

(74)
(75)

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...

Case (6): By solving (64) for α = 1, γ = −4, and β = 0 in (64) we derive unknown
tanh(ξ)
variables. By Substituting obtained results and Y = 1+tanh
in (63), after some
2
(ξ)
straightforward computations, we obtain
2

u12 (x, t) = ± √

4b
t)) + tanh4 (µ(x −
3b 1 − 2 tanh2 (µ(x − 25k
4b2
10ka
t)))2
(1 + tanh2 (µ(x − 25k

4b2
25k t))

,

(76)

4b2
3b
4b2
t)) + tanh2 (µ(x −
t))),(77)
u13 (x, t) = ∓ √
(−2 + coth2 (µ(x −
25k
25k
4 10ka
q
b
, kb > 0.
where µ = 41 5k
The solution (76) is same Eq. (38) in [25].
Case (7): By assuming α = 1, γ = 4, and β = 0 in (64) and solving the resulttan(ξ)
ing system and Substituting it’s solutions and Y = 1−tan
2 (ξ) in (63), after some
simplifications, we obtain
2

4b
t)) + tan4 (µ(x −
3b 1 + 2 tan2 (µ(x − 25k
u14 (x, t) = ± √
4b2
10ka
t)) − 1)2
(tan2 (µ(x − 25k

4b2
25k t))

,

(78)

4b2
4b2
3b
t)) + tan2 (µ(x −
t))), (79)
(2 + cot2 (µ(x −
u15 (x, t) = ± √
25k
25k
4 10ka
q
b
where µ = 14 −b
5k , k < 0.
The solution (78) is same Eq. (39) in [25].
Case (8): By considering α = −1, γ = −4, and β = 0 in (64) and solving the
cot(ξ)
obtained system and Substituting it’s solutions and Y = 1−cot
2 (ξ) in (63) after some
straightforward computations, we get
2

4b
t)) + cot4 (µ(x −
3b 1 + 2 cot2 (µ(x − 25k
u16 (x, t) = ± √
4b2
10ka
t)) − 1)2
(cot2 (µ(x − 25k

3b
(2 + tan2 (µ(x −
u17 (x, t) = ± √
4 10ka
q
b
where µ = 14 −b
5k , k < 0.
The solution (80) is same Eq. (39) in [25].
Case (9): By solving (64) for α = 1, γ = 2, and β
tan(ξ)
By Substituting these values and Y = 1+tan(ξ)

35

4b2
25k t))

,

(80)

4b2
4b2
t)) + cot2 (µ(x −
t))), (81)
25k
25k

= −2 we obtain unknown variables.
in (63), after some simplifications,

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...

we obtain
2

u18 (x, t) = ± √
u19 (x, t) = ± √

4b
t)))
6b (1 + tan2 (µ(x − 25k
,
4b2
10ka (1 + tan(µ(x − 25k t)))2

3b
4b2
csc2 (µ(x −
t)),
25k
10ka

(82)
(83)

q
b
where µ = 12 −b
5k , k < 0.
The solution (82) is same Eq. (22) and Eq. (32) in [25].
Case (10): By letting α = 1, γ = 2, and β = 2 in (64) and solving the resulting
tan(ξ)
in (63), after some simplifisystem and Substituting it’s solutions and Y = 1−tan(ξ)
cations, we obtain
2

1
2

4b
t)))
6b (1 + tan2 (µ(x − 25k
,
u20 (x, t) = ± √
4b2
10ka (tan(µ(x − 25k t)) − 1)2

(84)

u21 (x, t) = ± √

(85)

3b
4b2
t)),
csc2 (µ(x −
25k
10ka

q

−b b
where µ =
5k , k < 0.
The solution (84) is same Eq. (22) and Eq. (32) in [25].
Case (11): By considering α = −1, γ = −2, and β = 2 in (64) and solving the
cot(ξ)
in (63), after some
obtained system and Substituting it’s solutions and Y = 1+cot(ξ)
straightforward computations, we obtain
2

u22 (x, t) = ± √
u23 (x, t) = ± √

4b
t)))
6b (1 + cot2 (µ(x − 25k
,
2
4b
10ka (1 + cot(µ(x − 25k
t)))2

4b2
3b
sec2 (µ(x −
t)),
25k
10ka

(86)
(87)

q
b
where µ = 12 −b
5k , k < 0.
The solution (86) is same Eq. (21) and Eq. (31) in [25].
Case (12): By solving (64) for α = −1, γ = −2, and β = −2 we obtain unknown
cot(ξ)
in (63), after some
variable. By Substituting resulting solutions and Y = 1−cot(ξ)
simplifications, we get
2

4b
t)))
6b (1 + cot2 (µ(x − 25k
u24 (x, t) = ± √
,
4b2
10ka (cot(µ(x − 25k t)) − 1)2

(88)

u25 (x, t) = ± √

(89)

4b2
3b
sec2 (µ(x −
t)),
25k
10ka
36

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...
q
b
where µ = 21 −b
5k . k < 0.
The solution (88) is same Eq. (21) and Eq. (31) in [25].
Not only our solutions for the modified Kawahara equation (59) cover all results
obtained by Wazwaz in [25], but also other solutions appear.
5.Conclusions
In this article, the modified tanh-coth method has been successfully implemented to
find new traveling wave solutions for two nonlinear PDEs, namely, the Kawahara and
the modified Kawahara equations. The results show that this method is a powerful
Mathematical tool for obtaining exact solutions for the Kawahara and modified
Kawahara equations. It is also a promising method to solve other nonlinear partial
differential equations.
References
[1] M. Wadati, Introduction to solitons, Pramana: J. Phys. 57 (5-6) (2001)
841-847.
[2] M. Wadati, The exact solution of the modified Korteweg-de Vries equation, J.
Phys. Soc. Jpn. 32 (1972) 1681-1687.
[3] M. Wadati, The modified Korteweg-de Vries equation, J. Phys. Soc. Jpn. 34
(1973) 1289-1296.
[4] J. Weiss, M. Tabor, G. Carnevale, The Painleve property for partial differential equations, J. Math. Phys. 24 (1983) 522-526.
[5] G.T. Liu, T.Y. Fan, New applications of developed Jacobi elliptic function
expansion methods, Phys. Lett. A 345 (2005) 161-166.
[6] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press,
Cambridge, 2004.
[7] A.M. Wazwaz, Distinct variants of the KdV equation with compact and noncompact structures, Appl. Math. Comput. 150 (2004) 365-377.
[8] J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations, Chaos
Solitons and Fractals 30 (2006) 700-708.
[9] W. Malfeit, Solitary wave solutions of nonlinear wave equations. Am J Phys.
60 (1992) 650-654.
[10] A.M. Wazwaz, New solitons and kinks solutions for the Gardner equation,
Commun Nonlinear Sci. Numer. Simul. 12 (2007) 1395-1404.
[11] E.G. Fan, H.Q. Zhang, A note on the homogeneous balance method. Phys.
Lett A 246 (1998) 403-406.
[12] E.G. Fan, Extended tanh-function method and its applications to nonlinear
equations. Phys Lett A 277 (2000) 212-218.
37

A. Jabbari, H. Kheiri - New exact traveling wave solutions for the Kawahara...

[13] A.M. Wazwaz, The tanh method for traveling wave solutions to the ZhiberShabat equation and other related equation. Commun Nonlinear Sci Numer Simul
13 (2008) 584-592.
[14] A.M. Wazwaz, New traveling wave solutions to the Boussinesq and the KleinGordon equations, Commun Nonlinear Sci. Numer. Simul. 13 (2008) 889-901.
[15] A.M. Wazwaz, The extended tanh method for the Zakharov-Kuznetsov (ZK)
equation, the modified ZK equation, and its generalized forms, Commun Nonlinear
Sci. Numer. Simul. 13 (2008) 1039-1047.
[16] A.M. Wazwaz, The tanhcoth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. Comput. 188 (2007) 1467-1475.
[17] S.A. El-Wakil, S.K. El-Labany, M. A. Zahran, R. Sabry, Modified extended
tanh-function method and its applications to nonlinear equations, Appl. Math. Comput. 161 (2005) 403-412.
[18] S.A. El-Wakil, S.K. El-Labany, M. A. Zahran, R. Sabry, Modified extended
tanh-function method for solving nonlinear partial differential equations, Phys. Lett.
A 299 (2002) 179-188.
[19] A.A. Soliman, The modified extended tanh-function method for solving Burgerstype equations, Physics A 361 (2006) 394-404.
[20] H. Chen, H. Zhang, New multiple soliton solutions to the general BurgersFisher equation and the Kuramoto-Sivanshinsky equation. Choas, Soliton and Fractals, 19 (2004) 71-76.
[21] T. Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc.
Jpn. 33 (1972) 260-264.
[22] S. Zhang, J.L. Tong, W. Wang, A generalized (G′ /G)-expansion method for
the mKdV equation with variable coefficients, Phys. Lett. A 372 (2008) 2254-2257.
[23] T.Y. Wang, Y-H. Ren, Y-L. Zhao, Exact solutions of (3+1)-dimensional
stochastic Burgers equation. Chaos, Solitons and Fractals, 26 (2006) 920-927.
[24] A.M. Wazwaz, New solitary wave solutions to the Kuramoto-Sivashinsky and
the Kawahara equations, Appl. Math. Comput. 182 (2006) 1642-1650.
[25] A.M. Wazwaz, New solitary wave solutions to the modified Kawahara equation, Phys. Lett. A 8(4-5)(2007) 588-592.
Azizeh Jabbari and Hossein Kheiri
Faculty of mathematical sciences
University of Tabriz
Tabriz
Iran
email:jabbari.azizeh@gmail.com, h-kheiri@tabrizu.ac, kheirihossein@yahoo.com

38

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52