Paper-18-20-2009. 121KB Jun 04 2011 12:03:11 AM

ACTA UNIVERSITATIS APULENSIS

No 20/2009

ON SOME RESULTS FOR λ−SPIRALLIKE FUNCTIONS OF
COMPLEX ORDER OF HIGHER-ORDER DERIVATIVES OF
MULTIVALENT FUNCTIONS

Pramila Vijaywargiya
Abstract. In this paper we establish results of various kinds concerning λ−
spirallike functions of complex order in the unit disc U = {z : z ∈ C, |z| < 1} by
using the method of differential subordination. Our results provide extensions and
generalizations of many known and new results.
2000 Mathematics Subject Classification: 30C45.
Keywords: λ− spirallike functions, Subordination, Starlike, Multivalent functions.

1. Introduction
For a fixed p ∈ N := {1, 2, 3, ...} , let An,p denote the class of all analytic functions
of the form

f (z) = z p +


X

ak z k ,

(n ∈ N ),

(1.1)

k=n+p

which are p - valent in the open unit disc U = {z : z ∈ C, |z| < 1}. Upon differentiating both sides of (1.1) q - times with respect to z, the following differential operator
is obtained :

f (q) (z) = α(p; q) z p−q +

X

α(k; q) ak z k−q ,


(1.2)

k=n+p

where
α(p; q) =

p!
(p − q)!

(p ≥ q; p ∈ N ; q ∈ N ∪ {0}).

(1.3)

Several researchers have investigated higher-order derivatives of multivalent functions, (see, e.g.[8,12]).
175

P. Vijayvargiya - On some results for λ−spirallike functions of complex order...

A function f (z) ∈ An,p is said to be λ− spirallike of complex order in U if and only

if
(
)
#)
(
"
zf (q+1) (z)
1

Re
− (1 − b) cos λ − i sin λ

(1.4)
e
b cos λ
(p − q)f (q) (z)
(p ≥ q; p ∈ N ; q ∈ N ∪ {0} ; 0 ≤ ρ < 1),
for some real λ, |λ| < π2 , b 6= 0 , complex.
We denote this class by Snλ,q (ρ; b).
Now we mention below some known subclasses of our class Snλ,q (ρ; b):

(i) For q = 0, p = 1, ρ = 0 and n = 1, our class is reduced into the class S λ (b),
introduced and studied by Al-oboudi and Haidan [1].
(ii) For q = 0, p = 1, ρ = 0 and b = 1 − δ (0 ≤ δ < 1), our class is reduced into
the class Snλ (δ), introduced by Obradovic and Owa [9]. Further this class contains
the classes due to Libera [4] (for n=1) and Spacek [13] (for n=1, δ = 0) as special
cases.
(iii) For q = 0, p = 1, λ = 0 and n = 1, our class is reduced into starlike of
complex order b and type ρ denoted by Sρ∗ (b), which contain another class by Nasr
and Aouf [7], for ρ = 0.
Let f and g be analytic in the unit disc U. The function f is subordinate to g,
written as f ≺ g or f (z) ≺ g(z), if g is univalent, f (0) = g(0) and f (U) ⊆ g(U).
The general theory of differential subordinations was introduced by Miller and
Mocanu [5]. Some classes of the first-order differential subordinations were considered by the same authors in [5]. Namely let ψ : C 2 → C (C is the complex plane) be
analytic in a domain D, let h be univalent in U, and let p(z) be analytic in U with

(p(z), zp (z)) ∈ D when z ∈ U, then p(z) is said to satisfy the first order differential
subordination if

ψ (p(z), zp′ (z) ≺ h(z)
(1.5)

The univalent function q is said to be a dominant of the differential subordination
(1.5) if p ≺ q for all p satisfying (1.5). If q̃ is a dominant of (1.5) and q̃ ≺ q for all
dominants q of (1.5), then q is said to be best dominant of (1.5).

2. Results and Consequences.
We shall require the following results due to Miller and Mocanu in order to prove
our main results of the next section:
Lemma 1 [6]. Let q be univalent in the unit disk U, and let θ and φ be analytic
in a domain D containing q(U), with φ(w) 6= 0 when w ∈ q(U).
Set Q(z) = zq ′ (z)φ(q(z)), h(z) = θ(q(z)) + Q(z) and suppose that
176

P. Vijayvargiya - On some results for λ−spirallike functions of complex order...


(i) Q is starlike (univalent) in U with Q(0) = 0 and Q (0) 6= 0.
(ii) Re {zh′ (z)/Q(z)} > 0 for z ∈ U.
If p is analytic in U, with p(0) = q(0), p(U) ⊂ D and
θ(p(z)) + zp′ (z)φ(p(z)) ≺ θ(q(z)) + zq ′ (z)φ(q(z)) = h(z),


(2.1)

then p ≺ q and q is the best dominant of (2.1).
Lemma 2 [5]. Let φ(u, v) be complex valued function, φ : D → C, D ⊂ C × C
and let u = u1 + iu2 , v = v1 + iv2 . Suppose that the function φ(u, v) satisfies the
following conditions:
(i) φ(u, v) is continuous in D;
(ii) (1, 0) ∈ D and Re {φ(1, 0)} > 0;
(iii) Re {φ(iu2 , v1 )} ≤ 0 for all (iu2 , v1 ) ∈ D and such that v1 ≤ −n(1 + u22 )/2.
Suppose that p(z) = 1 + pn z n + pn+1 z n+1 + ..., be regular in the unit disk U such
that

(p(z), zp (z)) ∈ D for all z ∈ U. If
n

o



Re φ(p(z), zp (z)) > 0

then

Re {p(z)} > 0

(z ∈ U),

(z ∈ U).

Lemma 3 [11]. The function (1 − z)γ ≡ eγ log(1−z) , γ 6= 0 is univalent in U if
and only if γ is either in the closed disk |γ − 1| ≤ 1 or in the closed disk |γ + 1| ≤ 1.
3. Main Results and Consequences.
Theorem 1. Let f ∈ Snλ,q (ρ; b), (|λ| < π2 , b 6= 0, complex, 0 ≤ ρ < 1, p >
q),then

1
f (q) (z)
(3.1)

p−q
2γ(p−q)(1−ρ)b

cos λe−iλ
α(p; q) z
(1 − z)
where γ 6= 0 is complex and either |2γ(p − q)(1 − ρ)b cos λe−iλ + 1| ≤ 1 or
|2γ(p − q)(1 − ρ)b cos λe−iλ − 1| ≤ 1 and this is the best dominant.
−iλ



−1

Proof. Let q(z) = (1 − z)−2γ(p−q)(1−ρ)b cos λe , φ(w) = γb(p − q) cos λe−iλ
w−1
and θ(w) = 1 in Lemma 1. Then it is easy to verify the conditions (i) and (ii) of the
Lemma 1. Namely q is univalent in U by Lemma 3, while
h(z) = θ(q(z)) + zq ′ (z)φ(q(z)) =
177

1 + (1 − 2ρ)z
.

1−z

P. Vijayvargiya - On some results for λ−spirallike functions of complex order...

Consequently, for p(z) = 1 + pn z n + pn+1 z n+1 + ..., analytic in U with p(z) 6= 0 for
0 < |z| < 1, from (2.1) we get
1+

zp′ (z)
eiλ
1 + (1 − 2ρ)z

γb(p − q) cos λ p(z)
1−z

(3.2)

⇒ p(z) ≺ q(z)
Now, if in (3.2) we choose p(z) =
f (q) (z)

α(p; q) z p−q





f (q) (z)
α(p ; q) z p−q





, then we have
1

2γ(p−q)(1−ρ)b cos λe−iλ

(1 − z)


which evidently, completes the proof of Theorem 1.
If we put γ =

−eiλ
2(p−q)(1−ρ)b cos λ

in Theorem 1, we get

Corollary 2. Let f (z) ∈ Snλ,q (ρ; b), (|λ| < π2 , b 6= 0, complex, 0 ≤ ρ < 1, p >
q), then
α(p; q) z p−q
f (q) (z)

!

eiλ
2(p−q)(1−ρ)b cos λ

≺ (1 − z)

(3.3)

and this is the best dominant.
From (3.3), we have the following inequality for f (z) ∈ Snλ,q (ρ; b)


eiλ


!
α(p; q) z p−q 2(p−q)(1−ρ)b cos λ




1

≤ |z| (z ∈ U)
(q) (z)


f



(3.4)

Remark. (i) If we put q = 0, p = 1 and ρ = 0 in Theorem 1, we get a recent
result by Aouf, Oboudi and Haidan [2] for the class S λ (b), which contains the results
obtained earlier by Obradovic, Aouf and Owa [10] for the classes S(b), S λ and S λ (δ)
respectively.
(ii) Putting q = 0, p = 1 and ρ = 0 in Corollary 2, we get a result obtained
by Aouf, Al- Oboudi and Haidan [2]. Also λ = 0 in (3.4), gives the result obtained
earlier by Obradovic, Aouf and Owa [10].
Theorem 3. Let the function f (z) defined by (1.1) be in the clas Snλ,q (ρ; b) and
let
0



n
(z ∈ U),
2β(p − q)(1 − ρ)b cos λ + n

where b 6= 0 real, |λ| < π2 , 0 ≤ ρ < 1, p > q, p ∈ N , and q ∈ N ∪ {0} .
Proof. If we put
B=

n
2β(p − q)(1 − ρ)b cos λ + n

and
f (q) (z)
α(p; q) z p−q

!βeiλ

(3.6)

= (1 − B) p(z) + B

(3.7),

where β satisfied (3.5) then p(z) = 1 + pn z n + pn+1 z n+1 + ..., is regular in the unit
disk U.
By a simple computation, we observe from (3.7) that


e

"

#

(1 − B)zp′ (z)
zf (q+1) (z)

1
=
β(p − q) [(1 − B)p(z) + B]
(p − q)f (q) (z)

(3.8)

and from that
"

(

)

#

zf (q+1) (z)
(1 − B)zp′ (z)

1
+
b
cos
λ
−ρ
=
1−ρ+
β(p − q)b cos λ [(1 − B)p(z) + B]
(p − q)f (q) (z)
(3.9)
Since f (z) ∈ Snλ,q (ρ; b), therefore from (3.9), we get
1
eiλ
b cos λ

(1 − B)zp′ (z)
> 0, (z ∈ U)
Re 1 − ρ +
β(p − q)b cos λ {(1 − B)p(z) + B}




(3.10)

Let us consider the function φ(u, v) defined by
φ(u, v) = 1 − ρ +

(1 − B)v
,
β(p − q)b cos λ [(1 − B)u + B]
o

n

−B
× C.
then φ(u, v) is continuous in D = C − 1−B
Also, (1, 0) ∈ D and Re {φ(1, 0)} = 1 − ρ > 0.
Furthermore, for all (iu2 , v1 ) ∈ D such that v1 ≤

Re {φ(iu2 , v1 )} = 1 − ρ + Re



−n(1+u22 )
,
2

we have

(1 − B)v1
β(p − q)b cos λ {(1 − B)iu2 + B}
179



P. Vijayvargiya - On some results for λ−spirallike functions of complex order...

=1−ρ+

≤1−ρ−

=

B(1 − B)v1
n

o

n

o

β(p − q)b cos λ (1 − B)2 u22 + B 2
nB(1 − B)(1 + u22 )

2β(p − q)b cos λ (1 − B)2 u22 + B 2

(1 − B) [2β(p − q)(1 − ρ)b cos λ − n] u22
n

2β(p − q)b cos λ (1 − B)2 u22 + B 2

o

≤0

because 0 < B < 1 and (2β(p − q)(1 − ρ)b cos λ − n) ≤ 0.
Therefore, the function φ(u, v) satisfies the condition of Lemma 2. This proves
that
Re {p(z)} > 0 for z ∈ U, that is, from (3.7)



f (q) (z)
Re
 α(p; q) z p−q

!βeiλ 


> B (z ∈ U),



which is equivalent to the statement of Theorem 3.
Taking ρ = 0 and β =

n
2(p−q)b cos λ

in Theorem 3, we have

Corollary 4. Let the function f (z) defined by (1.1) be in the Snλ,q (0; b). Then
Re





f (q) (z)


 α(p; q)

z p−q

!

neiλ
2(p−q)b cos λ







>

1
(z ∈ U).
2

Acknowledgement: The author is grateful to Prof. S. P. Goyal, University of
Rajasthan, Jaipur for his valuable suggestions and kind help during the preparation
of this paper. She is also thankful to the CSIR, India, for providing Senior Research
Fellowship under research Scheme No. 09/149(0431)/2006-EMR-I.
References
[1] F. M. Al-Oboudi and M. M. Haidan, Spirallike functions of complex order, J.
Natural Geom., 19 (2000), 53-72.
[2] M. K. Aouf, F. M. Al-Oboudi and M. M. Haidan, On some results for λ−
spirallike and λ− Robertson functions of complex order, Publ. Inst. Math., Nouv.
ser., 75 (2005), 93-98.
[3] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Moscow,
(1952), English Translation, Proc. Amer. Math. Soc., Providence, R.I., (1969).
180

P. Vijayvargiya - On some results for λ−spirallike functions of complex order...

[4] R. J. Libera, Univalent λ− spiral functions, Canad. J. Math., 19 (1967),
449-456.
[5] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the
complex plane, J. Math. Anal. Appl. , 65 (1978), 289-305.
[6] S. S. Miller and P. T. Mocanu, On some classes of first-order differential
subordinations, Michigan Math. J., 32 (1985), 185-195.
[7] M. A. Nasr and M. K. Aouf, Starlike functions of complex order, J. Natural
Sci. Math., 25 (1985), 1-12.
[8] M. Nunokawa, On the multivalent functions, Indian J. Pure Appl. Math., 20
(1989), 577-582.
[9] M. Obradovic and S. Owa, On some results for λ− spiral functions of order
α, Int. J. Math. Math. Sci., 9 (1986), 439-446.
[10] M. Obradovic, M. K. Aouf and S. Owa, On some results for starlike functions
of complex order, Publ. Inst. Math., Nouv. Ser., 46 , (1989), 79-85.
[11] M. S. Robertson, Certain classes of integral operators, J. Natur. Geom., 16,
(1999).
[12] H. Silverman, Higher order derivatives, Chi. J. of Math., 23, (1995), 189191.
[13] L. Spacek, Contribution a la theori des function univalents, Casopis Pest.
Math., (1932), 12-19.
Pramila Vijaywargiya
Department of Mathematics
University of Rajasthan
Jaipur (INDIA)- 3020055
email: [email protected]

181

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52