sigma08-092. 247KB Jun 04 2011 12:10:21 AM

Symmetry, Integrability and Geometry: Methods and Applications

SIGMA 4 (2008), 092, 14 pages

Sonine Transform Associated to the Dunkl Kernel
on the Real Line⋆
Fethi SOLTANI
Department of Mathematics, Faculty of Sciences of Tunis,
Tunis-El Manar University, 2092 Tunis, Tunisia
E-mail: [email protected]
Received June 19, 2008, in final form December 19, 2008; Published online December 26, 2008
Original article is available at http://www.emis.de/journals/SIGMA/2008/092/
Abstract. We consider the Dunkl intertwining operator Vα and its dual t Vα , we define and
study the Dunkl Sonine operator and its dual on R. Next, we introduce complex powers of
the Dunkl Laplacian ∆α and establish inversion formulas for the Dunkl Sonine operator Sα,β
and its dual t Sα,β . Also, we give a Plancherel formula for the operator t Sα,β .
Key words: Dunkl intertwining operator; Dunkl transform; Dunkl Sonine transform; complex powers of the Dunkl Laplacian
2000 Mathematics Subject Classification: 43A62; 43A15; 43A32

1


Introduction

In this paper, we consider the Dunkl operator Λα , α > −1/2, associated with the reflection
group Z2 on R. The operators were in general dimension introduced by Dunkl in [2] in connection
with a generalization of the classical theory of spherical harmonics; they play a major role in
various fields of mathematics [3, 4, 5] and also in physical applications [6].
The Dunkl analysis with respect to α ≥ −1/2 concerns the Dunkl operator Λα , the Dunkl
transform Fα and the Dunkl convolution ∗α on R. In the limit case (α = −1/2); Λα , Fα and ∗α
agree with the operator d/dx , the Fourier transform and the standard convolution respectively.
First, we study the Dunkl Sonine operator Sα,β , β > α:
Sα,β (f )(x) :=

Γ(β + 1)
Γ(β − α)Γ(α + 1)

Z

1

−1


f (xt)(1 − t2 )β−α−1 (1 + t)|t|2α+1 dt,

and its dual t Sα,β connected with these operators. Next, we establish for them the same results
as those given in [8, 14] for the Radon transform and its dual; and in [9] for the spherical mean
operator and its dual on R. Especially:
– We define and study the complex powers for the Dunkl Laplacian ∆α = Λ2α .
– We give inversion formulas for Sα,β and t Sα,β associated with integro-differential and
integro-differential-difference operators when applied to some Lizorkin spaces of functions
(see [9, 1, 13]).
– We establish a Plancherel formula for the operator t Sα,β .
The content of this work is the following. In Section 2, we recall some results about the
Dunkl operators. In particular, we give some properties of the operators Sα,β and t Sα,β .


This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics. The full collection
is available at http://www.emis.de/journals/SIGMA/Dunkl operators.html

2


by

F. Soltani
In Section 3, we consider the tempered distribution |x|λ for λ ∈ C\{−(ℓ + 1), ℓ ∈ N} defined
λ

h|x| , ϕi :=

Z

R

|x|λ ϕ(x)dx.

Also we study the complex powers of the Dunkl Laplacian (−∆α )λ , for some complex number λ.
In the classical case when α = −1/2, the complex powers of the usual Laplacian are given in [16].
In Section 4, we give the following inversion formulas:
g = Sα,β K1 (t Sα,β )(g),

f = (t Sα,β )K2 Sα,β (f ),


where
K1 (f ) =


(−∆α )β−α f,


K2 (f ) =


(−∆β )β−α f


and

cα =

1
[2α+1 Γ(α


+ 1)]2

.

Next, we give the following Plancherel formula for the operator t Sα,β :
Z
Z
2
2β+1
|f (x)| |x|
dx =
|K3 (t Sα,β (f ))(y)|2 |x|2α+1 dy,
R

R

where
K3 (f ) =


2

r


(−∆α )(β−α)/2 f.


The Dunkl intertwining operator and its dual

We consider the Dunkl operator Λα , α ≥ −1/2, associated with the reflection group Z2 on R:


2α + 1 f (x) − f (−x)
d
f (x) +
.
(1)
Λα f (x) :=
dx

x
2
For α ≥ −1/2 and λ ∈ C, the initial problem:
Λα f (x) = λf (x),

f (0) = 1,

has a unique analytic solution Eα (λx) called Dunkl kernel [3, 5] given by
Eα (λx) = ℑα (λx) +

λx
ℑα+1 (λx),
2(α + 1)

where
ℑα (λx) := Γ(α + 1)


X


n=0

(λx/2)2n
,
n! Γ(n + α + 1)

is the modified spherical Bessel function of order α.
Notice that in the case α = −1/2, we have
Λ−1/2 = d/dx

and

E−1/2 (λx) = eλx .

For λ ∈ C and x ∈ R, the Dunkl kernel Eα has the following Bochner-type representation
(see [3, 11]):
Z 1
α−1/2
eλxt 1 − t2
Eα (λx) = aα

(1 + t)dt,
−1

Sonine Transform Associated to the Dunkl Kernel on the Real Line

3

where
aα = √

Γ(α + 1)
,
π Γ(α + 1/2)

which can be written as:
−(2α+1)

Eα (λx) = aα sgn(x) |x|

|x|


Z

−|x|

Eα (0) = 1.

eλy x2 − y 2

α−1/2

(x + y)dy,

x 6= 0,

We notice that, the Dunkl kernel Eα (λx) can be also expanded in a power series [10] in the
form:
Eα (λx) =



X
(λx)n

n=0

bn (α)

,

(2)

where
b2n (α) =

22n n!
Γ(n + α + 1),
Γ(α + 1)

b2n+1 (α) = 2(α + 1)b2n (α + 1).

Let α > −1/2 and we define the Dunkl intertwining operator Vα on E(R) (the space of
on R), by

C ∞ -functions

Vα (f )(x) := aα

1

Z

−1

f (xt) 1 − t2

which can be written as:
−(2α+1)

Vα (f )(x) = aα sgn(x) |x|

α−1/2
Z

|x|

−|x|

Vα (f )(0) = f (0).

(1 + t)dt,

f (y) x2 − y 2

α−1/2

(x + y)dy,

x 6= 0,

Remark 1. For α > −1/2, we have
Eα (λ.) = Vα (eλ. ),

λ ∈ C.

Proposition 1 (see [18], Theorem 6.3). The operator Vα is a topological automorphism
of E(R), and satisfies the transmutation relation:


d
f ,
f ∈ E(R).
Λα (Vα (f )) = Vα
dx
Let α > −1/2 and we define the dual Dunkl intertwining operator t Vα on S(R) (the Schwartz
space on R), by
Z
α−1/2
t
sgn(y) y 2 − x2
(x + y)f (y)dy,
Vα (f )(x) := aα
|y|≥|x|

which can be written as:
t

2α+1

Vα (f )(x) = aα sgn(x)|x|

Z

|t|≥1

α−1/2
sgn(t) t2 − 1
(1 + t)f (xt)dt.

4

F. Soltani

Proposition 2 (see [19], Theorems 3.2, 3.3).
(i) The operator t Vα is a topological automorphism of S(R), and satisfies the transmutation
relation:
t

Vα (Λα f ) =

d t
( Vα (f )),
dx

f ∈ S(R).

(ii) For all f ∈ E(R) and g ∈ S(R), we have
Z
Z
2α+1
Vα (f )(x)g(x)|x|
dx =
f (x) t Vα (g)(x)dx.
R

R

Remark 2 (see [15]).
(i) For α > −1/2 and f ∈ E(R), we can write
Vα (f )(x) = ℜα (fe )(|x|) +

1
ℜα (M fo )(|x|),
x

where
1
fe (x) = (f (x) + f (−x)),
2

1
fo (x) = (f (x) − f (−x)),
2

M fo (x) = xfo (x),

and ℜα is the Riemann–Liouville transform (see [17], page 75) given by
Z 1
α−1/2
fe (xt) 1 − t2
dt,
x ≥ 0.
ℜα (fe )(x) := 2aα
0

Thus, we obtain

Vα−1 (f )(x) = ℜ−1
α (fe )(|x|) +

1 −1
ℜ (M fo )(|x|).
x α

Therefore (see also [20], Proposition 2.2), we get

 

Z 1

d r
d
2r+1
2 r−α−1/2 2α+1
−1
x
fe (xt) 1 − t
t
dt ,
Vα (fe )(x) = dα
dx xdx
0




Z 1

d r+1
−1
2 r−α−1/2 2α+2
2r+2
Vα (fo )(x) = dα
fo (xt) 1 − t
t
dt ,
x
xdx
0
where r = [α + 1/2] denote the integer part of α + 1/2, and dα =
(ii) For α > −1/2 and f ∈ S(R), we can write
t

2−r π
Γ(α+1)Γ(r−α+1/2) .

Vα (f )(x) = Wα (fe )(|x|) + xWα (M −1 fo )(|x|),

where
M −1 fo (x) =

1
(f (x) − f (−x)),
2x

and Wα is the Weyl integral transform (see [17, page 85]) given by
Z ∞
α−1/2
2α+1
fe (xt) t2 − 1
tdt,
x ≥ 0.
Wα (fe )(x) := 2aα x
1

Thus, we obtain

(t Vα )−1 f (x) = Wα−1 (fe )(|x|) + xWα−1 (M −1 fo )(|x|).

Sonine Transform Associated to the Dunkl Kernel on the Real Line

5

The Dunkl kernel gives rise to an integral transform, called Dunkl transform on R, which
was introduced by Dunkl in [4], where already many basic properties were established. Dunkl’s
results were completed and extended later on by de Jeu in [5].
The Dunkl transform of a function f ∈ S(R), is given by
Z
Fα (f )(λ) :=
Eα (−iλx)f (x)|x|2α+1 dx,
λ ∈ R.
R

We notice that F−1/2 agrees with the Fourier transform F that is given by:
F(f )(λ) :=

Z

e−iλx f (x) dx,

λ ∈ R.

R

Proposition 3 (see [5]).
(i) For all f ∈ S(R), we have
Fα (Λα f )(λ) = iλ Fα (f )(λ),

λ ∈ R,

where Λα is the Dunkl operator given by (1).
(ii) Fα possesses on S(R) the following decomposition:
Fα (f ) = F ◦ t Vα (f ),

f ∈ S(R).

(iii) Fα is a topological automorphism of S(R), and for f ∈ S(R) we have
Z
Eα (iλx)Fα (f )(λ)|λ|2α+1 dλ,
f (x) = cα
R

where
cα =

1
[2α+1 Γ(α

+ 1)]2

.


(iv) The normalized Dunkl transform cα Fα extends uniquely to an isometric isomorphism
of L2 (R, |x|2α+1 dx) onto itself. In particular,
Z
Z
2
2α+1
|Fα (f )(λ)|2 |λ|2α+1 dλ.
|f (x)| |x|
dx = cα
R

R

For T ∈ S ′ (R), we define the Dunkl transform Fα (T ) of T , by
hFα (T ), ϕi := hT, Fα (ϕ)i,

ϕ ∈ S(R).

Thus the transform Fα extends to a topological automorphism on S ′ (R).
In [19], the author defines:
• The Dunkl translation operators τx , x ∈ R, on E(R), by


y ∈ R.
τx f (y) := (Vα )x ⊗ (Vα )y (Vα )−1 (f )(x + y) ,

These operators satisfy for x, y ∈ R and λ ∈ C the following properties:
Eα (λx)Eα (λy) = τx (Eα (λ.))(y),

and

Fα (τx f )(λ) = Ek (iλx)Fα (f )(λ),

f ∈ S(R).

(3)

6

F. Soltani

Proposition 4 (see [11]). If f ∈ C(R) (the space of continuous functions on R) and x, y ∈ R
such that (x, y) 6= (0, 0), then

Z π
x+y
fe ((x, y)θ ) + fo ((x, y)θ )
τx f (y) = aα
[1 − sgn(xy) cos θ] sin2α θdθ,
(x,
y)
θ
0
1
1
fo (z) = 2 (f (z) − f (−z)),
fe (z) = 2 (f (z) + f (−z)),
p
2
2
(x, y)θ = x + y − 2|xy| cos θ.
• The Dunkl convolution product ∗α of two functions f and g in S(R), by
Z
f ∗α g(x) :=
τx f (−y)g(y)|y|2α+1 dy,
x ∈ R.
R

This convolution is associative, commutative in S(R) and satisfies (see [19, Theorem 7.2]):
Fα (f ∗α g) = Fα (f )Fα (g).
For T ∈ S ′ (R) and f ∈ S(R), we define the Dunkl convolution product T ∗α f , by
T ∗α f (x) := hT (y), τx f (−y)i,

x ∈ R.

(4)

Note that ∗−1/2 agrees with the standard convolution ∗:
T ∗ f (x) := hT (y), f (x − y)i.

3

The Dunkl Sonine transform

In this section we study the Dunkl Sonine transform, which also studied by Y. Xu on polynomials
in [20]. For thus we consider the following identity, which is a consequence of Xu’s result when
we extend the result of Lemma 2.1 on E(R).
Proposition 5. Let α, β ∈ ]−1/2, ∞[, such that β > α. Then
Z 1
β−α−1
Eα (λxt) 1 − t2
(1 + t)|t|2α+1 dt,
Eβ (λx) = aα,β
−1

where

aα,β =

Γ(β + 1)
.
Γ(β − α)Γ(α + 1)

Proof . From (2), we have
Z

1

−1

Eα (λxt) 1 − t


2 β−α−1

2α+1

(1 + t)|t|

dt =


X
(λx)n

n=0

bn (α)

In (α, β),

where
In (α, β) =

Z

1

t n 1 − t2

−1

or
I2n (α, β) = 2

Z

0

1

1−t

β−α−1

(1 + t)|t|2α+1 dt,


2 β−α−1 2n+2α+1
t

dt =

Z

0

1

(1 − y)β−α−1 y n+α dy

(5)

Sonine Transform Associated to the Dunkl Kernel on the Real Line
=

7

Γ(β − α)Γ(n + α + 1)
,
Γ(n + β + 1)

and
I2n+1 (α, β) = 2

Z

1

1 − t2

0

Thus
Z

1

−1

Eα (λxt) 1 − t2

β−α−1

β−α−1

t2n+2α+3 dt = I2n (α + 1, β + 1).

(1 + t)|t|2α+1 dt =

Γ(β − α)Γ(α + 1)
Eβ (λx),
Γ(β + 1)

which gives the desired result.



Remark 3. We can write the formula (5) by the following
−(2β+1)

Eβ (λx) = aα,β sgn(x) |x|

Z

|x|

−|x|

Eα (λy) x2 − y 2

β−α−1

(x + y)|y|2α+1 dy,

x 6= 0.

Definition 1. Let α, β ∈ ]−1/2, ∞[, such that β > α. We define the Dunkl Sonine transform Sα,β on E(R), by
Sα,β (f )(x) := aα,β

Z

1

−1

f (xt) 1 − t2

which can be written as:
−(2β+1)

Sα,β (f )(x) = aα,β sgn(x) |x|

β−α−1
Z

|x|

−|x|

Sα,β (f )(0) = f (0).

(1 + t)|t|2α+1 dt,

f (y) x2 − y 2

β−α−1

(x + y)|y|2α+1 dy,

x 6= 0,

Remark 4. For α, β ∈ ]−1/2, ∞[, such that β > α, we have
Eβ (λ.) = Sα,β (Eα (λ.)),

λ ∈ C.

(6)

Definition 2. Let α, β ∈ ]−1/2, ∞[, such that β > α. We define the dual Dunkl Sonine
transform t Sα,β on S(R), by
Z
β−α−1
t
sgn(y) y 2 − x2
(x + y)f (y)dy,
Sα,β (f )(x) := aα,β
|y|≥|x|

which can be written as:
t

Sα,β (f )(x) = aα,β sgn(x)|x|2(β−α)

Z

|t|≥1

sgn(t) t2 − 1

β−α−1

Proposition 6.
(i) For all f ∈ E(R) and g ∈ S(R), we have
Z
Z
2β+1
Sα,β (f )(x)g(x)|x|
dx =
f (x) t Sα,β (g)(x)|x|2α+1 dx.
R

R

(ii) Fβ possesses on S(R) the following decomposition:
Fβ (f ) = Fα ◦ t Sα,β (f ),

f ∈ S(R).

(t + 1)f (xt)dt.

8

F. Soltani

Proof . Part (i) follows from Definition 1 by Fubini’s theorem. Then part (ii) follows from (i)

and (6) by taking f = Eα (−iλ.).
In [20, Lemma 2.1] Y. Xu proves the identity Sα,β = Vβ ◦ Vα−1 on polynomials. As the
intertwiner is a homeomorphism on E(R) and polynomials are dense in E(R), this gives the
identity also on E(R). In the following we give a second method to prove this identity.
Theorem 1.
(i) The operator t Sα,β is a topological automorphism of S(R), and satisfies the following
relations:
t
t

Sα,β (f ) = (t Vα )−1 ◦ t Vβ (f ),

f ∈ S(R),

t

Sα,β (Λβ f ) = Λα ( Sα,β (f )),

f ∈ S(R).

(ii) The operator Sα,β is a topological automorphism of E(R), and satisfies the following
relations:
Sα,β (f ) = Vβ ◦ Vα−1 (f ),

Λβ (Sα,β (f )) = Sα,β (Λα f ),

f ∈ E(R),

f ∈ E(R).

Proof . (i) From Proposition 6 (ii), we have
t

Sα,β (f ) = (Fα )−1 ◦ Fβ (f ).

(7)

Using Proposition 3 (ii), we obtain
t

Sα,β (f ) = (t Vα )−1 ◦ t Vβ (f ),

f ∈ S(R).

(8)

Thus from Proposition 2 (i),
t

t

−1

Sα,β (Λβ f ) = ( Vα )

t

t

−1

◦ Vβ (Λβ f ) = ( Vα )




d t
Vβ (f ) .
dx

Using the fact that
t

d t
( Vα (f )) ⇐⇒ Λα (t Vα )−1 (f ) = (t Vα )−1
Vα (Λα f ) =
dx



d
f
dx



,

we obtain
t

Sα,β (Λβ f ) = Λα (t Vα )−1 ( t Vβ (f )) = Λα (t Sα,β (f )).

(ii) From Proposition 2 (ii), we have
Z
Z
t
f (x) Vβ (g)(x)dx =
Vβ (f )(x)g(x)|x|2β+1 dx.
R

R

On other hand, from (8), Proposition 2 (ii) and Proposition 6 (i) we have
Z
Z
Z
t
t
t
f (x) Vβ (g)(x)dx =
f (x) Vα ◦ Sα,β (g)(x)dx =
Vα (f )(x) t Sα,β (g)(x)|x|2α+1 dx
R
R
ZR
2β+1
=
Sα,β ◦ Vα (f )(x)g(x)|x|
dx.
R

Then
Sα,β ◦ Vα (f ) = Vβ (f ).

Sonine Transform Associated to the Dunkl Kernel on the Real Line

9

Hence from Proposition 1,
Λβ (Sα,β (f )) =

Λβ Vβ (Vα−1 (f ))

= Vβ




d −1
V (f ) .
dx α

Using the fact that
Λα (Vα (f )) = Vα



d
f
dx



⇐⇒ Vα−1 (Λα f ) =

d −1
V (f ),
dx α

we obtain
Λβ (Sα,β (f )) = Vβ ◦ Vα−1 (Λα f ) = Sα,β (Λα f ),
which completes the proof of the theorem.

4



Complex powers of ∆α

For λ ∈ C, Re(λ) > −1, we denote by |x|λ the tempered distribution defined by
λ

h|x| , ϕi :=

Z

R

|x|λ ϕ(x)dx,

ϕ ∈ S(R).

(9)

We write
λ

h|x| , ϕi =

Z



xλ [ϕ(x) + ϕ(−x)]dx,

0

ϕ ∈ S(R),

then from [1], we obtain the following result.
Lemma 1. Let ϕ ∈ S(R). The mapping g : λ → h|x|λ , ϕi is complex-valued function and has
an analytic extension to C\{−(1 + 2ℓ), ℓ ∈ N}, with simple poles −(2ℓ + 1), ℓ ∈ N and
Res(g, −1 − 2ℓ) = 2

ϕ(2ℓ) (0)
.
(2ℓ)!

Proposition 7. Let ϕ ∈ S(R).
(i) The function λ → h|x|λ+2α+1 , ϕi is analytic on C\{−(2α + 2ℓ + 2), ℓ ∈ N}, with simple
poles −(2α + 2ℓ + 2), ℓ ∈ N.
22α+λ+2 Γ(α+1)Γ( 2α+λ+2 )

2
(ii) The function λ →
h|x|−(λ+1) , ϕi is analytic on C\{−(2α + 2ℓ + 2),
Γ(−λ/2)
ℓ ∈ N}, with simple poles −(2α + 2ℓ + 2), ℓ ∈ N.
(iii) For λ ∈ C\{−(2α + 2ℓ + 2), ℓ ∈ N} we have

 22α+λ+2 Γ(α + 1)Γ( 2α+λ+2
) −(λ+1)
2
|x|
,
Fα |x|λ+2α+1 =
Γ(−λ/2)

in S ′ -sense.

(iv) For λ ∈ C\{−(2α + 2ℓ + 2), ℓ ∈ N} we have
|x|λ+2α+1 =

2λ Γ( 2α+λ+2
)
2
Fα (|x|−(λ+1) ),
Γ(α + 1)Γ(−λ/2)

in S ′ -sense.

10

F. Soltani

Proof . (i) Follows directly from Lemma 1.
(ii) From [7, pages 2 and 8] the function λ → Γ( 2α+λ+2
) has an analytic extension to
2
1
C\{−(2α+2ℓ+2), ℓ ∈ N}, with simple poles −(2α+2ℓ+2), ℓ ∈ N, and the function λ → Γ(−λ/2)
has zeros 2ℓ, ℓ ∈ N. Thus from Lemma 1 we see that
λ→

22α+λ+2 Γ(α + 1)Γ( 2α+λ+2
)
2
h|x|−(λ+1) , ϕi
Γ(−λ/2)

is analytic on C\{−(2α + 2ℓ + 2), ℓ ∈ N}, with simple poles −(2α + 2ℓ + 2), ℓ ∈ N.

2

(iii) Let determine the value of Fα (|x|λ+2α+1 ) in the S ′ -sense. We put ψt (x) := e−tx , t > 0.
Then ψt ∈ S(R), and from [12]:
Fα (ψt )(x) = Γ(α + 1)t−(α+1) e−x

2 /4t

,

x ∈ R.

Furthermore, for ϕ ∈ S(R) we have
Z
Z
2
2α+1
Fα (ϕ)(x)ψt (x)|x|
dx = Γ(α + 1) ϕ(x)t−(α+1) e−x /4t |x|2α+1 dx.
R

R

Multiplying both sides by t−λ/2−1 and integrating over (0, ∞), we obtain for Re(λ) ∈ ]−(2α +
2), 0[:
Z
Z
22α+λ+2 Γ(α + 1)Γ( 2α+λ+2
)
2
Fα (ϕ)(x)|x|λ+2α+1 dx =
ϕ(x)|x|−(λ+1) dx.
Γ(−λ/2)
R
R
This and from (3) we get for Re(λ) ∈ ]−(2α + 2), 0[:
Fα (|x|λ+2α+1 ) =

22α+λ+2 Γ(α + 1)Γ( 2α+λ+2
) −(λ+1)
2
|x|
.
Γ(−λ/2)

The result follows by analytic continuation.
(iv) From (iii) we have
|x|λ+2α+1 =


22α+λ+2 Γ(α + 1)Γ( 2α+λ+2
) −1
2
Fα |x|−(λ+1) .
Γ(−λ/2)

Using the fact that


hFα−1 |x|−(λ+1) , ϕi = h|x|−(λ+1) , Fα−1 (ϕ)i,

ϕ ∈ S(R).

By applying (9) and Proposition 3 (iii), we obtain
Z
−1
−(λ+1)
|x|−(λ+1) Fα (ϕ)(−x)dx,
hFα (|x|
), ϕi = cα
R

ϕ ∈ S(R).

Then


Fα−1 |x|−(λ+1) = cα Fα |x|−(λ+1) ,

which gives the result.



Definition 3. For λ ∈ C\{−(α + ℓ + 1), ℓ ∈ N}, the complex powers of the Dunkl Laplacian ∆α
are defined for f ∈ S(R) by
(−∆α )λ f (x) :=

22λ Γ(α + λ + 1) −(2λ+1)
|x|
∗α f (x),
Γ(α + 1)Γ(−λ)

where ∗α is the Dunkl convolution product given by (4).

Sonine Transform Associated to the Dunkl Kernel on the Real Line

11

In the next part of this section we use Definition 3 and Proposition 7 (iv) to establish the
following result:

Fα (−∆α )λ f (x) = |x|2λ Fα (f )(x).

Proposition 8. For λ ∈ C\{−(α + ℓ + 1), ℓ ∈ N} and f ∈ S(R),
λ

(−∆α ) f (x) = bα (λ)

Z "Z
R

π

(1 + sgn(xy) cos θ)
2(λ+α+1)
(x, y)θ

0

sin



#

θdθ f (y)|y|2α+1 dy,

where
bα (λ) = √

22λ Γ(α + λ + 1)
,
π Γ(α + 1/2)Γ(−λ)

(x, y)θ =

p
x2 + y 2 − 2|xy| cos θ.

Proof . From Definition 3, (4) and (9), we have
22λ Γ(α + λ + 1)
h|y|−(2λ+1) , τx f (−y)i
Γ(α + 1)Γ(−λ)
Z
22λ Γ(α + λ + 1)
=
|y|−2(λ+α+1) τx f (−y)|y|2α+1 dy.
Γ(α + 1)Γ(−λ) R

(−∆α )λ f (x) =

So
λ

(−∆α ) f (x) =

Z

τx (|y|−2(λ+α+1) )(−y)f (y)|y|2α+1 dy.

R

Then the result follows from Proposition 4.



Note 1. We denote by
• Ψ the subspace of S(R) consisting of functions f , such that
f (k) (0) = 0,

∀ k ∈ N.

• Φα the subspace of S(R) consisting of functions f , such that
Z

R

f (y) y k |y|2α+1 dy = 0,

∀ k ∈ N.

The spaces Ψ and Φ−1/2 are well-known in the literature as Lizorkin spaces (see [1, 9, 13]).
Lemma 2 (see [1]). The multiplication operator Mλ : f → |x|λ f , λ ∈ C, is a topological
automorphism of Ψ. Its inverse operator is (Mλ )−1 = M−λ .
Theorem 2.
(i) The Dunkl transform Fα is a topological isomorphism from Φα onto Ψ.
(ii) The operator t Sα,β is a topological isomorphism from Φβ onto Φα .
(iii) For λ ∈ C\{−(α + ℓ + 1), ℓ ∈ N} and f ∈ Φα , the function (−∆α )λ f belongs to ∈ Φα ,
and
Fα ((−∆α )λ f )(x) = |x|2λ Fα (f )(x).

(10)

12

F. Soltani

Proof . (i) Let f ∈ Φα , then
(k)

(Fα (f ))

k!
(0) = (−i)
bk (α)
k

Z

R

f (x) xk |x|2α+1 dy = 0,

∀ k ∈ N.

Hence Fα (f ) ∈ Ψ.
Conversely, let g ∈ Ψ. Since Fα is a topological automorphism of S(R). There exists
f ∈ S(R), such that Fα (f ) = g. Thus
Z
(k)
k k!
g (0) = (−i)
f (x) xk |x|2α+1 dy = 0,
∀ k ∈ N.
bk (α) R
So f ∈ Φα and Fα (f ) = g.
(ii) follows directly from (i) and (7).
(iii) Similarly to the standard convolution if f ∈ S(R) and S ∈ S ′ (R), then S ∗α f ∈ E(R)
and T|x|2α+1 S∗α f ∈ S ′ (R). Moreover
Fα (T|x|2α+1 S∗α f ) = Fα (f )Fα (S).
Let f ∈ Φα and λ ∈ C\{−(α + ℓ + 1), ℓ ∈ N}. Consequently, from Definition 3, Proposition 7 (iv) and (9) we have
Fα (T|x|2α+1 (−∆α )λ f ) = |x|2λ+2α+1 Fα (f ) = T|x|2λ+2α+1 Fα (f ) .

(11)

On the other hand from (3),
Fα (T|x|2α+1 (−∆α )λ f ) = T|x|2α+1 Fα ((−∆α )λ f ) .

(12)

From (11) and (12), we obtain
Fα ((−∆α )λ f ) = |x|2λ Fα (f ).
Then by Lemma 2 and (i) we deduce that (−∆α )λ f ∈ Φα .

5



Inversion formulas for Sα,β and t Sα,β

In this section, we establish inversion formulas for the Dunkl Sonine transform and its dual.
Definition 4. We define the operators K1 , K2 and K3 , by
 cβ
cβ −1
Fα |λ|2(β−α) Fα (f ) =
(−∆α )β−α f,
f ∈ Φα ,


 cβ
cβ −1
K2 (f ) :=
Fβ |λ|2(β−α) Fβ (f ) =
(−∆β )β−α f,
f ∈ Φβ ,


r
r

cβ −1

K3 (f ) :=
Fα |λ|β−α Fα (f ) =
(−∆α )(β−α)/2 f,
f ∈ Φα .


K1 (f ) :=

Lemma 3. For all g ∈ Φβ , we have
K1 (t Sα,β )(g) = (t Sα,β )K2 (g).

(13)

Proof . Let g ∈ Φβ . Using Proposition 6 (ii),
K1 (t Sα,β )(g) =


cβ −1
Fα |λ|2(β−α) Fβ (g) = (t Sα,β )K2 (g).




Sonine Transform Associated to the Dunkl Kernel on the Real Line

13

Theorem 3.
(i) Inversion formulas: For all f ∈ Φα and g ∈ Φβ , we have the inversions formulas:
(a) g = Sα,β K1 (t Sα,β )(g),

(b) f = (t Sα,β )K2 Sα,β (f ).

(ii) Plancherel formula: For all f ∈ Φβ we have
Z
Z
|f (x)|2 |x|2β+1 dx =
|K3 (t Sα,β (f ))(x)|2 |x|2α+1 dx.
R

R

Proof . (i) Let g ∈ Φβ . From Proposition 3 (iii), (6) and Proposition 6 (ii), we obtain
Z
g = cβ
Sα,β (Eα (iλ.)) Fβ (g)(λ)|λ|2β+1 dλ
R
Z

t
2β+1
Eα (iλ.) Fα ◦ Sα,β (g)(λ)|λ|

= cβ Sα,β
R
h
i

Sα,β Fα−1 (|λ|2(β−α) Fα ◦ t Sα,β (g)) .
=

Thus

g = Sα,β K1 (t Sα,β )(g),

g ∈ Φβ .

From the previous relation and (13), we deduce the relation:
f = (t Sα,β )K2 Sα,β (f ),

f ∈ Φα .

(ii) Let f ∈ Φβ . From Proposition 3 (iv) and Proposition 6 (ii), we deduce that
Z
Z
2
β−α
2
2β+1
|λ|
Fα (t Sα,β (f ))(λ) |λ|2α+1 dλ.
|f (x)| |x|
dx = cβ
R

R

Thus we obtain
Z
Z


2
2β+1
Fα K3 (t Sα,β (f )) (λ) 2 |λ|2α+1 dλ.
|f (x)| |x|
dx = cα
R

R

Then the result follows from this identity by applying Proposition 3 (iv).



Remark 5. Let f ∈ Φα and g ∈ Φβ . By writing (a) and (b) respectively for the functions
Sα,β (f ) and t Sα,β (g), we obtain
(c) f = K1 (t Sα,β )Sα,β (f ),

(d) g = K2 Sα,β (t Sα,β )(g).

Acknowledgements
The author is very grateful to the referees and editors for many critical comments on this paper.

References
[1] Baccar C., Hamadi N.B., Rachdi L.T., Inversion formulas for Riemann–Liouville transform and its dual
associated with singular partial differential operators, Int. J. Math. Math. Sci. 2006 (2006), Art. ID 86238,
26 pages.
[2] Dunkl C.F., Differential-difference operators associated with reflections groups, Trans. Amer. Math. Soc.
311 (1989), 167–183.
[3] Dunkl C.F., Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), 1213–1227.

14

F. Soltani

[4] Dunkl C.F., Hankel transforms associated to finite reflection groups, Contemp. Math. 138 (1992), 123–138.
[5] de Jeu M.F.E., The Dunkl transform, Invent. Math. 113 (1993), 147–162.
[6] Lapointe L., Vinet L., Exact operator solution of the Calogero–Sutherland model, Comm. Math. Phys. 178
(1996), 425–452, q-alg/9509003.
[7] Lebedev N.N., Special functions and their applications, Dover Publications, Inc., New York, 1972.
[8] Ludwig D., The Radon transform on Euclidean space, Comm. Pure. App. Math. 23 (1966), 49–81.
[9] Nessibi M.M., Rachdi L.T., Trim`eche K., Ranges and inversion formulas for spherical mean operator and
its dual, J. Math. Anal. Appl. 196 (1995), 861–884.
[10] Rosenblum M., Generalized Hermite polynomials and the Bose-like oscillator calculus, in Nonselfadjoint
Operators and Related Topics (Beer Sheva, 1992), Oper. Theory Adv. Appl., Vol. 73, Birkh¨
auser, Basel,
1994, 369–396, math.CA/9307224.
[11] R¨
osler M., Bessel-type signed hypergroups on R, in Probability Measures on Groups and Related Structures, XI (Oberwolfach, 1994), Editors H. Heyer and A. Mukherjea, Oberwolfach, 1994, World Sci. Publ.,
River Edge, NJ, 1995, 292–304.
[12] R¨
osler M., Generalized Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys.
192 (1998), 519–542, q-alg/9703006.
[13] Samko S.G., Hypersingular integrals and their applications, Analytical Methods and Special Functions, Vol. 5,
Taylor & Francis, Ltd., London, 2002.
[14] Solmon D.C., Asymptotic formulas for the dual Radon transform and applications, Math. Z. 195 (1987),
321–343.
[15] Soltani F., Trim`eche K., The Dunkl intertwining operator and its dual on R and applications, Preprint,
Faculty of Sciences of Tunis, Tunisia, 2000.
[16] Stein E.M., Singular integrals and differentiability properties of functions, Princeton University Press,
Princeton, 1970.
[17] Trim`eche K., Transformation int´egrale de Weyl et th´eor`eme de Paley–Wiener associ´es `
a un op´erateur
diff´erentiel singulier sur (0, ∞), J. Math. Pures Appl. (9) 60 (1981), 51–98.
[18] Trim`eche K., The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual, Integral Transform. Spec. Funct. 12 (2001), 349–374.
[19] Trim`eche K., Paley–Wiener theorems for the Dunkl transform and Dunkl translation operators, Integral
Transform. Spec. Funct. 13 (2002), 17–38.
[20] Xu Y., An integral formula for generalized Gegenbauer polynomials and Jacobi polynomials, Adv. in Appl.
Math. 29 (2002), 328–343.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52