Ouassarah. 148KB Jun 04 2011 12:09:19 AM

Existence of Solutions for Quasilinear Elliptic
Boundary Value Problems in Unbounded
Domains.
A. Ait Ouassarah

A. Hajjaj

Abstract
Under suitable assumptions we prove, via the Leray-Schauder fixed
point theorem, the existence of a solution for quasilinear elliptic boundary
¯ ∩ W 2,q (Ω), q > N which satisfies in addition the
value problem in C 2,α (Ω)
1
¯
condition, (1+ | x |2 ) 2 u ∈ C 2,α (Ω).

1

Introduction

Let G be a bounded, open and not empty subset of RN with C 2,α boundary,

¯ In this paper we consider quasilinear elliptic
N ≥ 2, 0 < α < 1 and let Ω := RN \G.
boundary value problems of the form,
(P)

 P

aij (x, u)Dij u − u = f(x, u, Du)

u = 0



in



on ∂Ω

These problems have been investigated by many authors under various assumptions

( see [3], [8], [10] and references mentioned there). Our aim is to establish, using
the Leray-Schauder fixed point theorem, the existence of smooth solutions for (P),
under the assumptions listed below:
1

(A1) The function g(x, z, p) := (1 + | x |2 ) 2 f(x, z, p) satisfies the conditions:


i) | g(x, z, p) | ≤ ϕ(| z |) 1 + | p |2
Received by the editors July 1995.
Communicated by J. Mawhin.



for all x ∈ Ω , z ∈ IR and p ∈ IRN .

Bull. Belg. Math. Soc. 3 (1996), 217–225

218


A. A. Ouassarah – A. Hajjaj




n





α





ii) | g(x, z, p) − g(x , z , p ) | ≤ ϕ(L) | x − x | + | z − z | + | p − p |

¯ ; z, z ′ ∈ [−L, L] and p, p′ ∈ BL (0).

for all L ≥ 0 ; x, x ∈ Ω
where ϕ is a positive increasing function.
(A2)
(A3)

o

,

¯
Suppose that all eventual solutions of the problem (P) in the space C 2(Ω)

tending to zero at infinite are a priori bounded in L (Ω).
ν| ξ |2 ≤

i)

P

aij (x, z)ξi ξj


≤ µ| ξ |2 ,

for all x ∈ Ω , z ∈ IR and ξ ∈ IRN
ii)



n





α



o


| aij (x, z) − aij (x , z ) | ≤ ψ(L) | x − x | + | z − z | ,




for all L > 0 ; x, x ∈ Ω and z, z ∈ [−L, L].
where ν and µ are positive constants and ψ is an increasing function.
(A4)

We suppose that

2µ − (N − 1)ν < 1 + R2

¯
where R is the radius of the largest ball contained in G = RN \Ω.
Remarks 1.1
a. The assumption (A2) is satisfied if one of the following conditions holds:
(A’2) f is continuously differentiable with respect to the p and z variables.
Furtheremore, for some constant λ > −1 we have,
∂f

(x, z, 0) ≥ λ
∀ x ∈ Ω , ∀ z ∈ IR.
∂z
(A”2) There exists a constant Λ such that ,
zf(x, z, 0) > −z 2 ,
for all x ∈ Ω and | z |≥ Λ
b.

By a further translation of the domain we assume, without loss of generality,
that the ball BR(0) is contained in G. That is, | x |≥ R
∀x ∈ Ω.

c.

Our results can be generalized for general unbounded subdomains of RN with
smooth boundary.

The main result of this paper is stated as follows :
Theorem 1.1 If the assumptions (A1); (A2); (A3) and (A4) are satisfied,
2,q

¯
then for any q > N, the problem (P) has a solution u in the space C 2,α(Ω)∩W
(Ω).
1
¯
Furtheremore, (1 + | x |2 ) 2 u ∈ C 2,α(Ω).
N
Let p ≥ 1−α
be fixed. From now on we suppose that the assumptions (A1); (A2);
(A3) and (A4) are satisfied.

2

A priori estimates

The purpose of this section is to establish the following theorem,
Theorem 2.1

There exists a constant c > 0 such that any solution


¯ of the problem (P) satisfies,
u ∈ W 2,p(Ω) ∩ C 2,α(Ω)
1

i)

k (1 + | x |2 ) 2 u k2,α,Ω

ii)

k u k2,p,Ω′

≤ c.
1
2 −2

≤ c k (1 + | x | )

kLp (Ω′ )




∀Ω ⊂ Ω.

Existence of Solutions for Quasilinear Elliptic Boundary Value Problems

219

Where, here and in the following, we use the notations:
k v k0,0,Ω := sup | v(x) |

,

[v]α,Ω :=

x∈Ω

k v kk,α,Ω = k v kC k,α (Ω)
:=
¯


X

| v(x) − v(y) |
| x − y |α
x,y∈Ω,x6=y
sup

k Ds v k0,0,Ω +

X

|s|≤k

|s|=k



1/p

k v kk,p,Ω = k v kW k,p (Ω) := 

X Z

|s|≤k Ω

| Ds v |p dx

[Ds v]α,Ω

.

By a standard regularity argument it is easy to verify that any solution of (P) in
1
¯
the space W 2,p(Ω) ∩ W01,p(Ω) has the property: (1+ | x |2) 2 u ∈ C 2,α(Ω).
Before proving the theorem 2.1, we establish the following lemmas:
Lemma 2.2
There exists a constant c > 0 such that any solution
¯ ∩ W 2,p(Ω) of (P) satisfies the estimate,
u ∈ C 2,α(Ω)
k Du k0,α,Ω

≤c

Proof: The technique used here is similar to the one used in the first part of [9].
Let x¯ ∈ ∂Ω , q ≥ 0 and ζ be a real-valued function in C ∞ (RN ) with ζ(x) = 1 for
| x |≤ 12 and ζ(x) = 0 for | x |≥ 1. For r ∈ (0, 1), we define the function ζr by
x
).
setting,
ζr (x) := ζ( x−¯
r
In what follows c and c(r) denote generic constants that depend only on ν, µ, N, q,
M :=k u k0,0,Ω , and eventualy on r. By the elliptic regularity of the Laplacian together with the assumption (A3) we have,
Z

Ωr

X

|

q+2
Dij (ζr2 u) | dx

≤c

Z

Ωr

|

X

aij (¯
x, u(¯
x))Dij (ζr2 u) |

q+2

dx

(2.1)

Where Ωr := Ω ∩ Br (¯
x).
On the other hand by [6, theorem 1 ], there exist a constant r1 < 1 depending only
on ∂Ω, and two constants c > 0 and β ∈ (0, 1) depending only on ν, µ, M, r1 and
∂Ω such that,
[u]β,Ωr1 ≤ c
(2.2)
According to (A3), (2.1), (2.2) and the triangle inequality, we may choose r2 ≤ r1
small enough so that for any r ≤ r2 we have,
Z

Ωr

X

|

Dij (ζr2 u) |q+2

dx ≤ c

Z

Ωr

|

By differentiation we obtain,

X

aij (x, u(x))Dij (ζr2 u) |q+2 dx

Di (ζr2 u) = ζr2Di u + 2ζr uDi ζr

(2.3)

(2.4)

Dij (ζr2u) = ζr2 Dij u + 2ζr [Di uDj ζr + Dj uDi ζr ] + 2uDi ζr Dj ζr + 2ζr uDij ζr
Using (2.4), (A1) and (A3) , it is easy to verify that for any r ≤ r2 we have,
Z

Ωr

and,

|

X

aij (x, u(x))Dij (ζr2 u) |q+2

dx ≤ c

Z

Ωr

(ζr2 | Du |2)

q+2

dx + c(r)

(2.5)

220

A. A. Ouassarah – A. Hajjaj

Z

Ωr

X

(ζr2 | Dij u |)
c

Z

Ωr

q+2

X

|

(2.6)

dx ≤

Dij (ζr2 u) |q+2

dx +

Z

Ωr

(ζr2

2 q+2

| Du | )



dx + c(r)

Combining the identities (2.4), (2.5) and (2.6) with the following interpolation inequality [9], [7] :
Z

Ωr



!
Z X
 δ 4Z

q
q+2
q+2
(ζr2 | Du |2 ) dx + δ q+2
(ζr2 | Du |2) dx ≤ c
(ζr2 | Dij u |) dx
 r

Ωr
Ωr

where, δ :=k u − u(¯
x) k0,0,Ωr
we obtain for any r ≤ r2 the inequality,
Z

Ωr

X

|

q+2
Dij (ζr2 u) | dx+



q+2

δ
+c.
r

Z

Ωr

!4 Z

Z

Ωr

X

|

(ζr2 | Du |2 )

q+2

(2.7)

dx ≤

q+2
Dij (ζr2 u) | dx

+

Z

Ωr

(ζr2

2 q+2

| Du | )

dx



q

Ωr

(ζr2 | Du |2 ) dx + c(r)

Then, from (2.2) and (2.7), we get for r¯ small enough,
Z

Ωr¯

X

|

q+2
Dij (ζr¯2u) | dx+

Z

Ωr¯

(ζr¯2 | Du |2)
c(¯
r)

Z

q+2

Ωr¯

(2.8)

dx ≤
2 q

(ζr¯2 | Du | ) dx + c(¯
r)

This inequality is valid for any nonnegative real q then, by induction we deduce the
Z
estimate,
q
(2.9)
(ζr¯2 | Du |2 ) dx ≤ c(¯
r)
Ωr¯

Combining the identities (2.4), (2.8) and (2.9) we obtain,
k ζr¯2 u kW 2,q+2 (Ω) ≤ c(¯
r)
Then, because of the arbitrariness of q in IR+ , the Sobolev imbedding theorem [1]
yields,
k ζr¯2 u k1,α,Ω≤ c¯
where c¯ is a constant depending only on α and the parameters indicated previously.
In particular,
(2.10)
∀¯
x ∈ ∂Ω
k u k1,α,Ω∩B r¯ (¯x) ≤ c¯
2

Similarly, there exist constants r0 < 8r¯ and c0 > 0 depending only on ν, µ, α, r0 , r¯, N
and M such that for any x0 ∈ Ω, satisfying dist(x0, ∂Ω) > r3¯ we have:
k u k1,α,Br0 (x0 ) ≤ c0
It then follows from (2.10) and (2.11) that,
X
i

k Di u k0,α,Ω ≤ 3r0−α max(c0 , c¯).

(2.11)

Existence of Solutions for Quasilinear Elliptic Boundary Value Problems

221

Lemma 2.3
There exists a constant c > 0 such that any solution u of (P) in
¯ ∩ W 2,p(Ω) satisfies:
1
the space C 2,α(Ω)
sup (1+ | x |2 ) 2 | u(x) |≤ c.
x∈Ω

Proof:
The desired estimate will be obtained by the construction of suitable

comparaison functions in bounded subdomains Ω of Ω. Precisely let us set,
w(x) :=k u k0,0,∂Ω′ +K(1+ | x |2 )

− 12

where K is a positive constant to be specified later. By differentiation we have,
Di w = −Kxi (1+ | x |2 )

− 23

Dij w = 3Kxi xj (1+ | x |2 )

− 25

− Kδij (1+ | x |2 )

− 32

By a direct calculation we obtain,
−3 P
−5 P
¯
¯ ij (x)xixj − K(1+ | x |2) 2 a¯ii (x)
Lw
= 3K(1+ | x |2 ) 2 a

−K(1+ | x |2)

− 12

− k u k0,0,∂Ω′

Let λ1 ≤ ... ≤ λN be the eigenvalues of the matrix A := [¯
aij (x)].
P
P
Then, Since a¯ii (x) =
λi we have,
3

1

P


¯
Lw
≤ K(1+ | x |2 ) 2 [3λN − ¯aii(x) ] − K(1+ | x |2 ) 2
3
2 −2

≤ K(1+ | x | )
≤ K(1+ | x |2 )

− 23

2λN −

N
−1
X

#

λi − K(1+ | x |2 )

i=1

− 21

[2µ − (N − 1)ν ] − K(1+ | x |2)

− 12

| f(x, u(x), Du(x)) |≤ M1 (1+ | x |2)

But by (A1) we have,
M1 = ϕ(k u k0,0,Ω )
suffies to have,

"

h

1+ k Du k20,0,Ω

2µ − (N − 1)ν ≤

i

− 21

where,

¯ ± u) ≤ 0 in Ω it
. Then, for having L(w



1−



1−

M1
K



(1+ | x |2)



[1 + R2 ]

∀x∈Ω

If we seek K in ]M1 , +∞[, the last condition holds if the following inequality is
satisfied,
2µ − (N − 1)ν ≤

M1
K

by (A4) this inequality is equivalent "to the choice,
#−1
2µ − (N − 1)ν
K ≥ K0 := M1 1 −
1 + R2
for this choice we have,
(

¯ ± u) ≤ 0 in
L(w


w±u
≥ 0 on ∂Ω
It then follows from the weak maximum principle that,
| u(x) | ≤ k u k0,0,∂Ω′ +K(1+ | x |2 )


− 21



∀x ∈ Ω

Consequently, letting Ω −→ Ω, we obtain the desired estimate.

222

A. A. Ouassarah – A. Hajjaj
Proof of the theorem 2.1
1

v(x) := (1+ | x |2 ) 2 u.

Let us set

By differentiation we obtain,
Di v

1

= (1+ | x |2) 2 Di u + xi (1+ | x |2 )
1
2

Dij v = (1+ | x |2) Dij u + (1+ | x |2)
+δij (1+ | x |2)

− 12

− 12

− 12

u
(2.12)

[xj Di u + xi Dj u]

u − xixj (1+ | x |2)

− 32

u

Using (2.12), we obtain by a direct calculation,
1

¯ = g(x, u, Du) + 2(1+ | x |2)− 2 P a¯ij (x)xi Dj u
Lv
+(1+ | x |2 )

− 21

u

Now, we show that,

P

¯aii − (1+ | x |2)

− 32

u

P

(2.13)

a¯ij (x)xixj

k a¯ij k0,α,Ω ≤ c

(2.14)

k g(., u, Du) k0,α,Ω ≤ c

(2.15)

By the assumption (A3) we have,
k a¯ij k0,0,Ω≤ 2µ

(2.16)



And for x, x ∈ Ω we have,






| a¯ij (x) − ¯aij (x ) | := | aij (x, u(x)) − aij (x , u(x )) |




≤ ψ(k u k0,0,Ω ) [ | x − x |α + | u(x) − u(x ) | ]

(2.17)



≤ ψ(k u k0,0,Ω ) [ 1+ k u k0,α,Ω ] | x − x |α

Then, by virtue of the assumption (A2) and the lemma 2.2 , the inequalities (2.16)
and (2.17) imply the estimates (2.14). In the other hand by the lemma 2.2 and the
assumptions (A1)-(A2) we have,
h

k g(., u, Du) k0,0,Ω ≤ ϕ(k u k0,0,Ω) 1 + k Du k20,0,Ω
≤ c

i

and,






| g(x, u(x), Du(x)) − g(x , u(x ), Du(x )) |
≤ ϕ(k u k1,0,Ω)
≤ ϕ(k u k1,0,Ω)


≤ c | x − x |α .

n

n







| x − x |α + | u(x) − u(x ) | + | Du(x) − Du(x ) |
1+ k u k0,α,Ω + k Du k0,α,Ω

o



| x − x |α

o

The estimate (2.15) is then established. So, using the estimates (2.14)-(2.15) and
the identity (2.13), we deduce the estimate,
¯ k0,α,Ω ≤ c
k Lv
(2.18)

Existence of Solutions for Quasilinear Elliptic Boundary Value Problems

223

We apply now the Schauder estimate in unbounded domain [5], [2] to obtain,
¯ k0,α,Ω + k v k0,0,Ω}
k v k2,α,Ω ≤ c{ k Lv
(2.19)
Hence, by virtue of the lemma 2.3, the estimates (2.18) and (2.19) imply,
k v k2,α,Ω ≤ c

(2.20)


The first assertion of the theorem 2.1 is then established. Let now Ω be arbitrary
subdomain of Ω. Using the estimate (2.20) we obtain,
k u kp2,p,Ω′ :=


X Z

|s|≤2

X Z

|s|≤2

≤ c

Z





Ω′

| Ds u(x) |p dx
p
2 −2

(1+ | x | )

(1+ | x |2)


− p2





2

1
2

s

(1+ | x | ) | D u(x) |

p

dx

dx

The theorem 2.1 is then proved

3

Proof of the main theorem

Let E¯ and F¯ be the closures of the sets,
1

¯ and u = 0 on ∂Ω }
¯ / (1+ | x |2) 2 u ∈ C 2,α(Ω)
E := { u ∈ C 2,α(Ω)
and
1

¯ }
¯ / (1+ | x |2) 2 h ∈ C 0,α(Ω)
F := { h ∈ C 0,α(Ω)
¯ and C 0,α(Ω).
¯
respectively in the H¨older spaces C 2,α(Ω)
Let v be arbitrary and fixed in W 2,p(Ω) ∩ W01,p(Ω) and define the linear operators :
X ∂2
L0 :=
−1
i ∂xi∂xi
L1 :=

P

aij (x, v(x))Dij − 1

Lt := tL1 + (1 − t)L0 ,

t ∈ [0, 1]

Using the Schauder estimate in unbounded domains ( see [5], [2]) the maximum
¯ vanish on ∂Ω and tend to zero at
principle and the fact that the elements of E
infinite we obtain the estimate :
k u k2,α,Ω ≤ c k Lt u k0,α,Ω
∀u ∈ E¯ , ∀t ∈ [0, 1].
(3.1)
On the other hand it is well known that for any function f ∈ F , the linear equation
L0 u = f has a unique solution in W 2,p(Ω) ∩ W01,p(Ω) ( see [2]). By a standard
regularity argument this solution belongs in fact to the space E. Consequently, by
the density of F in F¯ and the estimate (3.1) it is easy to see that L0 is onto from
¯ into F¯ . So, the method of continuity and the estimate (3.1)
the Banach space E
¯ into F¯ . By a standard regularity
ensure that the linear operator L1 is onto from E
argument it is easy to see that L1 restricted to E is onto from E into F . In the
other hand the assumption (A1) asserts that f(., v, Dv) belongs to F . Then, the

224

A. A. Ouassarah – A. Hajjaj

linear problem,
(Pv )

 P

aij (x, v)Dij u − u =

f(x, v, Dv) in

u = 0





on ∂Ω

is uniquely solvable in E. Hence, the operator T which assigns for each v in
W 2,p(Ω) ∩ W01,p(Ω) the unique solution of (Pv ) is well defined. To prove that T
is completely continuous from W 2,p(Ω) ∩ W01,p(Ω) into itself, let (vn )n be a bounded
sequence in W 2,p(Ω) ∩ W01,p(Ω) and set un := T vn . A similar argument as that used
in the theorem 2.1 leads to the estimates:
k un k2,α,Ω

≤c

k un k2,p,Ω′

≤ c k (1 + | x |2 )

∀n ∈ IN,
− 12

k0,p,Ω′

∀n ∈ IN,

(3.2)


∀Ω ⊂ Ω.

(3.3)

Using the estimates (3.2) and (3.3), it is easy to verify that the sequences of derivatives of un up to order 2, satisfy the assumptions of [1, theorem 2.22]. The sequence
(un ) is then precompact in W 2,p(Ω) ∩ W01,p(Ω). The continuity of T follows easily.
According to theorem 2.1 the fixed points of the family of operators (σ.T )σ∈[0,1]
are apriori bounded in W 2,p(Ω) ∩ W01,p(Ω) by the same constant then, the LeraySchauder fixed point theorem [4, theorem 11.3] asserts that T has a fixed point u.
1
¯ In particular,
It is clear that u solves (P) and satisfies, (1+ | x |2) 2 u ∈ C 2,α(Ω).
2,α ¯
2,q
u ∈ C (Ω) ∩ W (Ω) for any q > N. The main theorem is then established.

References
[1] R. ADAMS ,“Sobolev spaces” ,Academic press (1975)
[2] S. AGMON , A. DOUGLIS , L. NIRENBERG “Estimates near the boundary
for solutions of elliptic partial differential equations satisfying general boundary
value condition I” Comm. Pure Appl. Math. 12 (1959), 623-727.
´
[3] N. P. CAC,
“Nonlinear elliptic boundary value problems for unbounded domains” J.Differential Equations 45 (1982), 191-198
[4] D. GILBARG , N.S. TRUDINGER “Elliptic Partial Differential Equations of
second order.” Second Edition, Springer-Verlag (1983).
[5] M. KONIG ,“Schauder’s estimates and boundary value problems for quasilinear
partial differential equations.”
(S.M.S. les presses de l’ universit´e de Montr´eal 1985 ).
[6] O.A.LADYZHENSKAYA , N.N. URAL’TSEVA “Estimates of the H¨
older norm
of the solutions of second-order quasilinear elliptic equations of the general
form” Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)
96 (1980), 161-168
[7] L. NIRENBERG “ On elliptic partial differential equations”Ann. Scuola Norm.
Sup. Pisa. Ser. 3, 13, (1954), 115-162.

Existence of Solutions for Quasilinear Elliptic Boundary Value Problems

225

[8] E.S.NOUSSAIR, “On the existence of solutions of nonlinear elliptic boundary
value problems” J.Differential Equations 34 (1979), 482-495
[9] F. TOMI “Uber semilineare elliptische differentialgleichungen zweiter ordnung”
Math. Z. 111 (1969), 350-366
[10] J.YAPING , L.LIJIANG “The Dirichlet problem for quasilinear elliptic differential equations in unbounded domains ”
J.Differential Equation 84 (1990) ,62-72.

D´epartement de Math´ematiques
Facult´e des sciences Semlalia B.P. S15
Marrakech - MAROC

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52