vol15_pp215-224. 122KB Jun 04 2011 12:05:55 AM

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 15, pp. 215-224, August 2006

ELA

http://math.technion.ac.il/iic/ela

REGIONS CONTAINING EIGENVALUES OF A MATRIX∗
TING-ZHU HUANG† , WEI ZHANG‡ , AND SHU-QIAN SHEN†
Abstract. In this paper, regions containing eigenvalues of a matrix are obtained in terms of
partial absolute deleted row sums and column sums. Furthermore, some sufficient and necessary
conditions for H-matrices are derived. Finally, an upper bound for the Perron root of nonnegative
matrices is presented. The comparison of the new upper bound with the known ones is supplemented
with some examples.
Key words. Eigenvalue, H-matrix, Perron root, Nonnegative matrix.
AMS subject classifications. 15A18, 15A42, 15A57, 65F15, 65F99.

1. Introduction. The Gerschgorin circle theorem gives a region in the complex
plane which contains all the eigenvalues of a square complex matrix. It is one of
those rare instances of a theorem which is elegant and useful and which has a short,

elegant proof (see e.g., [1] or [5]). Moreover, we have Brauer’s theorem, Ostrowski’s
theorem and Brauldi’s theorem etc., by which we can estimate the inclusion regions
of eigenvalues of a matrix in terms of its entries (see [5]).
Let Mn (C) denote the set of all n × n complex matrices and n = {1, 2, . . . , n}.
Let A = (aij ) ∈ Mn (C). The comparison matrix m(A) = (mij ) of A is defined by
mij =



|aij |, if i = j,
−|aij |, if i = j.

Recall that A is an H-matrix if its comparison matrix m(A) is an M-matrix. It is well
known that a square matrix A is an M-matrix if it can be written in the form
A = ωI − P, P is nonnegative, ω > ρ(P ),
ρ(P ) is the spectral radius of P . Criteria for judging M-matrices can be found in
[2, 4, 5, 8].
In Section 2, in terms of partial absolute deleted row sums and column sums, new
results are provided to estimate eigenvalues. Some sufficient and necessary conditions
for H-matrices are derived from the new eigenvalues inclusion regions. Moreover, in

Section 3, the results obtained will be applied to estimate the upper bound of the
Perron root of a nonnegative matrix. Some examples are presented in Section 4.
2. Regions containing eigenvalues. Let A = (aij ) be an n×n complex matrix
with n ≥ 2. Let α and β be nonempty index sets satisfying α ∪ β = n and α ∩ β = φ.
∗ Received by the editors 2 December 2005. Accepted for publication 30 July 2006. Handling
Editor: Joao Fillipe Queiro.
† School of Applied Mathematics, University of Electronic Science and Technology of China,
Chengdu, 610054, P. R. China (tzhuang@uestc.edu.cn).
‡ Department of Automation, Shanghai Jiaotong University, Shanghai, 200240, P. R. China.

215

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 15, pp. 215-224, August 2006

ELA

http://math.technion.ac.il/iic/ela


216

Ting-Zhu Huang, Wei Zhang, and Shu-Qian Shen

Define partial absolute deleted row sums and column sums as follows:


(α)
(α)
ri (A) =
|aij |, ci (A) =
|aji |;
j=i,j∈α

(β)



ri (A) =


j=i,j∈α

|aij |,

(β)

ci (A) =

j=i,j∈β



|aji |.

j=i,j∈β

If α contains a single element, say α = {i0 }, then we assume, by convention, that
(β)
(α)
(α)

(β)
(α)
ri0 (A) = 0. Similarly ri0 (A) = 0 if β = {i0 }. We will sometimes use ri (ci , ri ,
(β)

(β)

(α)

(α)

(β)

ci ) to denote ri (A) (ci (A), ri (A), ci (A), respectively) unless a confusion is
caused. Clearly, we have

(β)
(α)
ri (A) =
|aij | = ri (A) + ri (A),

j=i

ci (A) =



(β)

(α)

|aji | = ci (A) + ci (A).

j=i

Define, for all i ∈ α and j ∈ β,
(α)



(α)

= z ∈ C : |z − aii | ≤ ri (A) ,

(β)



(β)
= z ∈ C : |z − ajj | ≤ rj (A) ,

Gi

Gj

(αβ)

Gij







(α)
(β)
(α)
(β)
(β) (α)
|z − ajj | − rj
≤ ri rj
.
= z∈C:z∈
/ Gi ∪ Gj , |z − aii | − ri

Theorem 2.1. Each eigenvalue of matrix A of order n is contained in the region

Gαβ
G(αβ) ,

where


Gαβ :=





i∈α

(α)
Gi











j∈β



(β)
Gj 

and G(αβ) :=



(αβ)

Gij

.

i∈α,j∈β

Proof. Suppose λ is an eigenvalue of A, then there exists a nonzero vector x =

(x1 , . . . , xn )T such that
(2.1)

Ax = λx.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 15, pp. 215-224, August 2006

ELA

http://math.technion.ac.il/iic/ela

Regions Containing Eigenvalues of a Matrix

217

Denote |xp | = max {|xi |}, |xq | = max {|xj |}. Obviously, at least one of xp and xq is
i∈α
j∈β
nonzero.
i) Suppose xp xq = 0, then the p-th equation in (2.1) implies


apj xj +
apj xj ,
(λ − app )xp =
j∈α,j=p

|λ − app ||xp | ≤

j∈β



|apj ||xj | +



|apj ||xp | +

j∈α,j=p

(2.2)





|apj ||xj |



|apj ||xq |,

j∈β

j∈α,j=p

j∈β

i.e.,
|λ − app | ≤ rp(α) + rp(β)

(2.3)

Similarly, the q-th equation in (2.1) implies

(λ − aqq )xq =
aqj xj +
j∈α

|xq |
.
|xp |



aqj xj .

j∈β,j=q

By the same method we have
|λ − aqq | ≤ rq(α)

(2.4)

|xp |
+ rq(β) .
|xq |

If the following condition
|λ − app | ≤ rp(α) or |λ − aqq | ≤ rq(β)
holds, then λ ∈ Gαβ . Otherwise, if
|λ − app | − rp(α) > 0 and |λ − aqq | − rq(β) > 0,
then inequalities (2.3) and (2.4) imply that



|λ − app | − rp(α) |λ − aqq | − rq(β) ≤ rp(β) rq(α) .

That is λ ∈ G(αβ) .
ii) Suppose xq = 0 (xp = 0), then inequality (2.3) implies that
|λ − app | ≤ rp(α) .
Hence λ ∈ Gαβ .

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 15, pp. 215-224, August 2006

ELA

http://math.technion.ac.il/iic/ela

218

Ting-Zhu Huang, Wei Zhang, and Shu-Qian Shen

The argument is analogous when xp = 0 (xq = 0).
Since A and AT have the same eigenvalues, one can obtain a theorem for columns
by applying Theorem 2.1 to AT . Define, for all i ∈ α and j ∈ β,


(α)
(α)
Vi = z ∈ C : |z − aii | ≤ ci (A) ,
(β)

Vj

(αβ)

Vij



(β)
= z ∈ C : |z − ajj | ≤ cj (A) ,






(α)
(β)
(α)
(β)
(β) (α)
|z − ajj | − cj
≤ ci cj
.
= z∈C:z∈
/ Vi ∪ Vj , |z − aii | − ci

Corollary 2.2. Each eigenvalue of the matrix A of order n is contained in the
region
Vαβ
where
Vαβ :=





i∈α

(α)

Vi










j∈β



V (αβ) ,



(β) 

Vj

and V (αβ) :=



(αβ)

Vij

.

i∈α,j∈β

Corollary 2.3. Let A = (aij ) ∈ Mn (C). Suppose for all i ∈ α and j ∈ β,
(α)

(β)

(α)

(β)

a) |aii | − ri > 0 and |ajj | − rj > 0;



(α)
(β)
(β) (α)
b) |aii | − ri
|ajj | − rj
> ri rj .
Then A is nonsingular.
Proof. If A is singular, i.e., λ = 0 is an eigenvalue of A, by applying Theorem 2.1,
at least one of conditions a) and b) is invalid. Hence A is nonsingular.
Corollary 2.4. Let A = (aij ) ∈ Mn (C). Suppose for all i ∈ α and j ∈ β,
a) |aii | − ri > 0 and |ajj | − rj > 0;



(α)
(β)
(β) (α)
|ajj | − rj
> ri rj .
b) |aii | − ri
Then A is an H-matrix.
Proof. Obviously, the comparison matrix m(A) satisfies conditions a) and b) as
well as A. Hence m(A) is nonsingular from Corollary 2.3.
For any ε ≥ 0, define B = (bij ) := m(A) + εI, then we have
(α)

(α)

(β)

(β)

|bii | − ri (B) = (|aii | + ε) − ri (A) > 0,

|bjj | − rj (B) = (|ajj | + ε) − rj (A) > 0,

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 15, pp. 215-224, August 2006

ELA

http://math.technion.ac.il/iic/ela

219

Regions Containing Eigenvalues of a Matrix

and



(β)
(α)
|bii | − ri (B) |bjj | − rj (B)



(β)
(α)
|aii | + ε − ri (A) |ajj | + ε − rj (A)



(β)
(α)
|aii | − ri (A) |ajj | − rj (A)


=


(β)

(α)

ri (A)rj (A)
(α)
(β)
ri (B)rj (B).

>
=

By Corollary 2.3, we know that B is nonsingular. Hence m(A) is an M-matrix (see
e.g., [4]), which implies that A is an H-matrix.
Lemma 2.5. Let A = (aij ) ∈ Mn (C), and for all i ∈ α, j ∈ β,



(α)
(β)
(β)
(α)
(2.5)
|aii | − ri (A) |ajj | − rj (A) > ri (A)rj (A).
Then the following two conditions are equivalent:
(α)
1) For all i 
∈ α, |aii | − ri (A) > 0; 

|aij |, i ∈ n = φ.
2) J(A) := i : |aii | >
j=i

Proof. 1)⇒2): Note that condition 1) and (2.5) imply, for all i ∈ α and j ∈ β,
that
(β)

(α)

|aii | − ri (A) > 0 and |ajj | − rj (A) > 0.

If J(A) = φ, then for all i ∈ n, |aii | ≤
|aij |, i.e.,
j=i

(α)

(β)

(β)

(a)

0 < |aii | − ri (A) ≤ ri (A) and 0 < |ajj | − rj (A) ≤ rj (A).
Thus, we have




(α)
(β)
(β)
(α)
|aii | − ri (A) |ajj | − rj (A) ≤ ri (A)rj (A),

which contradicts (2.5). So J(A) = φ.
 2) ⇒ 1): Since J(A) = φ, there exists at least one i0 ∈ n such that |ai0 i0 | >
|ai0 j |. Without loss of generality, we assume that i0 ∈ α, then
j=i0

|ai0 i0 | >



(α)

|ai0 j | ≥ ri0 (A).

j=i0

Hence, from (2.5), for all j ∈ β, we can derive
(β)

|ajj | − rj (A) > 0,
(α)

and then, for all i ∈ α, |aii | − ri (A) > 0.
Immediately we have the following consequence from Lemma 2.5 and Corollary
2.4.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 15, pp. 215-224, August 2006

ELA

http://math.technion.ac.il/iic/ela

220

Ting-Zhu Huang, Wei Zhang, and Shu-Qian Shen

 Corollary 2.6. Let A be an n × n complex matrix. Suppose J(A) = {i : |aii | >
|aij | , i ∈ n} = φ and for all i ∈ α, j ∈ β,

j=i





(α)
(β)
(β)
(α)
|aii | − ri (A) |ajj | − rj (A) > ri (A)rj (A).

Then A is an H-matrix.
Remark 2.7. Corollary 2.6 is one of the main results in [2] (see Th. 1), which
was used as a criterion for generalized diagonally dominant matrices and M-matrices.
We call A a generalized doubly diagonally dominant matrix if J(A) = φ and



(α)
(β)
(β)
(α)
(2.6)
|aii | − ri (A) |ajj | − rj (A) ≥ ri (A)rj (A)

for all i ∈ α and j ∈ β. See [[3], p. 233] for detail. A is further said to be a strictly
generalized doubly diagonally dominant matrix if all the strict inequalities in (2.6)
(αβ)
hold, and is denoted by A ∈ Dn . It was shown by the authors in [3] that the Schur
complement of a generalized doubly diagonally dominant matrix is also a generalized
doubly diagonally dominant matrix. Moreover, Gao and Wang [2] showed that a
strictly generalized doubly diagonally dominant matrix is an H-matrix.
˜ n(αβ) by the set
Here we denote D
 

˜ n(αβ) := A AX ∈ Dn(αβ) , X is a positive diagonal matrix .
D

(αβ)
˜ n(αβ) .
Clearly we have Dn ⊂ D
Now, we present a sufficient and necessary condition for H-matrices.
˜ n(αβ) .
Corollary 2.8. A is an H-matrix if and only if A ∈ D
Proof. ⇒: If A is an H-matrix, then there exists a positive diagonal matrix X1
such that AX1 is a strictly diagonally dominant matrix, thus we can easily derive
(αβ)
˜ n(αβ) .
AX1 ∈ Dn , and then A ∈ D
˜ n(αβ) , then, by definition, there exists a positive diagonal matrix X2
⇐: If A ∈ D
(αβ)
such that AX2 ∈ Dn . By Corollary 2.6 we know that AX2 is an H-matrix, and
then there exists a positive diagonal matrix X3 such that AX2 X3 is a strictly diagonal
dominant matrix. Since X2 X3 is also a positive diagonal matrix, A is an H-matrix.
 Lemma 2.9. ([8]) Let A = (aij ) be an n × n H-matrix. Then J(A) = {i : |aii | >
|aij |, i ∈ n} = φ.
j=i

Corollary 2.10. Let A = (aij ) be an n × n H-matrix. Then for nonempty
index sets α and β satisfying α ∪ β = n and α ∩ β = φ, there exists at least one pair
(i0 , j0 ), i0 ∈ α and j0 ∈ β, such that



(α)
(β)
(β)
(α)
|ai0 i0 | − ri0 (A) |aj0 j0 | − rj0 (A) > ri0 (A)rj0 (A).
Proof. From Lemma 2.9, we have J(A) = φ. Suppose for all i ∈ α and j ∈ β,



(α)
(β)
(β)
(α)
|aii | − ri (A) |ajj | − rj (A) ≤ ri (A)rj (A).

Then A is not an H-matrix by Theorem 3 of [2], contradicting the assumptions.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 15, pp. 215-224, August 2006

ELA

http://math.technion.ac.il/iic/ela

221

Regions Containing Eigenvalues of a Matrix

3. Upper bounds for the Perron root. In this section we shall discuss the
upper bound for the Perron root of nonnegative matrices by using the eigenvalues
inclusion region obtained in Section 2.
Let A = (aij ) be an n × n nonnegative matrix with n ≥ 2. It is known that for
the Perron root ρ(A), i.e., the spectral radius of A, the following inequality holds (see
e.g., [4] or [7]):
(3.1)

min

1≤i≤n

n


aij ≤ ρ(A) ≤ max

1≤i≤n

j=1

n


aij .

j=1

Another known bound of ρ(A) belongs to Brauer and Gentry (see [6]):
(3.2)

min MA (i, j) ≤ ρ(A) ≤ max MA (i, j),
i=j

i=j

where
MA (i, j) =



1
2


aii + ajj

 21 


.
+ (aii − ajj )2 + 4
|aik |
|ajk |


k=i
k=j






For simplicity, (3.1) and (3.2) are called Frobenius’ bound and Brauer-Gentry’s bound,
respectively.
Theorem 3.1. Let A be an n × n nonnegative matrix. Then we have
ρ(A) ≤ max QA (i, j),
i∈α,j∈β

where
1
QA (i, j) =
2



aii +

(α)
ri

+ ajj +

(β)
rj

+



aii +

(α)
ri

− ajj −

(β)
rj

2

+

(β) (α)
4ri rj

 21 

.

Proof. Note that ρ(A) is an eigenvalue of A by the well known Perron-Frobenius
theory of nonnegative matrices (see e.g., [4]). So if we define
B := ρ(A)I − A,
then B is singular.
(α)
For all i ∈ α and j ∈ β, if |bii | − ri (B) > 0 and



(α)
(β)
(β)
(α)
|bii | − ri (B) |bjj | − rj (B) > ri (B)rj (B),
i.e.,



(α)

|ρ(A) − aii | − ri (A) > 0,



(α)
(β)
(β)
(α)
|ρ(A) − aii | − ri (A) |ρ(A) − ajj | − rj (A) > ri (A)rj (A).

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 15, pp. 215-224, August 2006

ELA

http://math.technion.ac.il/iic/ela

222

Ting-Zhu Huang, Wei Zhang, and Shu-Qian Shen

Then, by Corollary 2.3, we can derive B is nonsingular. So if B is singular, there
exists at least one pair (i0 , j0 ), i0 ∈ α and j0 ∈ β, such that
(α)

|ρ(A) − ai0 i0 | − ri0 (A) ≤ 0
or



(α)
(β)
(β)
(α)
|ρ(A) − ai0 i0 | − ri0 (A) |ρ(A) − aj0 j0 | − rj0 (A) ≤ ri0 (A)rj0 (A).

Moreover, by the fact that

ρ(A) ≥ max aii
i∈n

(see e.g., [4] or [5]), we have
(α)

ρ(A) − ai0 i0 − ri0 (A) ≤ 0

(3.3)
or
(3.4)





(α)
(β)
(β)
(α)
ρ(A) − ai0 i0 − ri0 (A) ρ(A) − aj0 j0 − rj0 (A) ≤ ri0 (A)rj0 (A).

From (3.3) and (3.4), we can easily derive

ρ(A) ≤ QA (i0 , j0 ).
Thus,
ρ(A) ≤ max QA (i, j).
i∈α,j∈β

For a complex square matrix A, it follows that ρ(A) ≤ ρ(|A|) (see e.g., [4] or [5]),
where |A| = (|aij |) is a nonnegative matrix. Immediately we obtain the following
result:
Corollary 3.2. Let A = (aij ) ∈ Mn (C). Then,

(β)
(α)
ρ(A) ≤ max 12 |aii | + ri + |ajj | + rj
i∈α,j∈β

 21 
2
(β) (α)
(β)
(α)
.
+ |aii | + ri − |ajj | − rj
+ 4ri rj
4. Examples. In this section, some numerical examples are provided to compare
our bounds with some known ones.
Example 1. Consider the nonnegative matrix


6 1 2 1
 3 5 1 1 

A=
 0 3 3 1  , ρ(A) = 8.6716.
0 0 3 3

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 15, pp. 215-224, August 2006

ELA

http://math.technion.ac.il/iic/ela

Regions Containing Eigenvalues of a Matrix

223

Using the upper bounds of Frobenius and Brauer-Gentry, we can obtain the same
result ρ(A) ≤ 10.0000. For α = {1, 2} and β = {3, 4}, by Theorem 3.1, we have
ρ(A) ≤ 9.1623.
Example 2 ([7]). Consider

1 1
 1 2

 1 2
A=
 1 2

 1 2
1 2

the nonnegative matrix

1 1 1 1
2 2 2 2 

3 3 3 3 
 , ρ(A) = 17.2069.
3 4 4 4 

3 4 5 5 
3 4 5 6

By Frobenius’ bound (3.1), Brauer-Gentry’s bound (3.2), Ledermann’s bound [[9],
Chapter 2, Theorem 1.3], Ostrowski’s bound [[9], Chapter 2, Theorem 1.4] and
Brauer’s bound [[9], Chapter 2, Theorem 1.5], we have
ρ(A) ≤ 21.0000 (by Frobenius’ bound),
ρ(A) ≤ 20.5083 (by Brauer-Gentry’s bound),
ρ(A) ≤ 20.9759 (by Ledermann’s bound),
ρ(A) ≤ 20.5000 (by Ostrowski’s bound),
ρ(A) ≤ 20.2596 (by Brauer’s bound).
For α = {1, 2, 3} and β = {4, 5, 6}, by Theorem 3.1, we have ρ(A) ≤ 19.1168.
Example 3. Consider the complex matrix


4 + 3i 2 3i 0

2
4 1 2i 
 , ρ(A) = 7.3783.
A=

2
0 3 1 
2
1 3 3

Let α = {1, 2} and β = {3, 4}. By Corollary 3.2, we have ρ(A) ≤ 9.5414.
Acknowledgments. Research supported by NCET in universities of China and
applied basic research foundations of Sichuan province (05JY029-068-2). The authors
would like to thank the referee very much for his good suggestions which greatly
improved the original manuscript of this paper.
REFERENCES
[1]
[2]
[3]
[4]
[5]

R.A. Brualdi and S. Mellendorf. Regions in the complex plane containing the eigenvalues of a
matrix. Amer. Math. Monthly, 101:975–985, 1994.
Y.M. Gao and X.H. Wang. Criteria for generalized diagonally dominant matrices and M matrices. Linear Algebra Appl., 169:257–268, 1992.
J.Z. Liu, Y.Q. Huang, and F.Z. Zhang. The Schur complements of generalized doubly diagonally
dominant matrices. Linear Algebra Appl., 378:231–244, 2004.
A. Berman and R. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Academic
Press, New York, 1979.
R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, New York, 1985.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 15, pp. 215-224, August 2006

ELA

http://math.technion.ac.il/iic/ela

224
[6]
[7]
[8]
[9]

Ting-Zhu Huang, Wei Zhang, and Shu-Qian Shen
A. Brauer and I.C. Gentry. Bounds for the greatest characteristic root of an irreducible nonnegative matrix. Linear Algebra Appl., 8:105–107, 1974.
L.Z. Lu. Perron complement and Perron root. Linear Algebra Appl., 341:239–248, 2002.
T.Z. Huang. A note on generalized diagonally domiant matrices. Linear Algebra Appl., 225:237–
242, 1995.
H. Minc. Nonnegative Matrices. John Wiley & Sons, New York, 1988.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52