vol9_pp132-137. 105KB Jun 04 2011 12:06:17 AM

The Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 9, pp. 132-137, August 2002

ELA

http://math.technion.ac.il/iic/ela

PROOF OF ATIYAH’S CONJECTURE FOR TWO
SPECIAL TYPES OF CONFIGURATIONS∗
ˇ –
´†
DRAGOMIR Z.
D OKOVIC
Abstract. To an ordered N -tuple (x1 , . . . , xN ) of distinct points in the three-dimensional
Euclidean space Atiyah has associated an ordered N -tuple of complex homogeneous polynomials
(p1 , . . . , pN ) in two variables x, y of degree N − 1, each pi determined only up to a scalar factor.
He has conjectured that these polynomials are linearly independent. In this note it is shown that
Atiyah’s conjecture is true for two special configurations of N points. For one of these configurations,
it is shown that a stronger conjecture of Atiyah and Sutcliffe is also valid.
Key words. Atiyah’s conjecture, Hopf map, Configuration of N points in the three-dimensional

Euclidean space, Complex projective line.
AMS subject classifications. 51M04, 51M16, 70G25

1. Two conjectures. Let (x1 , . . . , xN ) be an ordered N -tuple of distinct points
in the three-dimensional Euclidean space. Each ordered pair (xi , xj ) with i = j
determines a point
xj − xi
|xj − xi |
on the unit sphere S 2 . Identify S 2 with the complex projective line by using a stereographic projection. Hence one obtains a point (uij , vij ) on this projective line and
a complex nonzero linear form lij = uij x + vij y in two variables x and y. Define
homogeneous polynomials pi of degree N − 1 by

pi =
lij (x, y), i = 1, . . . , N.
(1.1)
j=i

Conjecture 1.1. (Atiyah [2]) The polynomials p1 , . . . , pN are linearly independent.
Atiyah [1], [2] has observed that his conjecture is true if the points x1 , . . . , xN are
collinear. He has also verified the conjecture for N = 3. The case N = 4 has been

verified by Eastwood and Norbury [4]. For additional information on the conjecture
(further conjectures, generalizations, and numerical evidence) see [2], [3].
In order to state the second conjecture, one has to be more explicit. Identify the
three-dimensional Euclidean space with R × C and denote the origin by O. Following
Eastwood and Norbury [4], we make use of the Hopf map h : C2 \{O} → (R×C)\{O}
defined by
h(z, w) = ((|z|2 − |w|2 )/2, z w).
¯
∗ Received by the editors on 26 May 2002. Accepted for publication on 17 July 2002. Handling
editor: Shmuel Friedland.
† Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
([email protected]). The author was supported in part by the NSERC Grant A-5285.

132

The Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 9, pp. 132-137, August 2002

ELA


http://math.technion.ac.il/iic/ela

133

Atiyah’s conjecture

This map is surjective and its fibers are the circles {(zu, wu) : u ∈ S 1 }, where S 1 is
the unit circle. If h(z, w) = (a, v), we say that (z, w) is a lift of (a, v). For instance,
we can take

λ−1/2 (λ, v¯), λ = a + a2 + |v|2 ,
as the lift of (a, v).
Assume that our points are xi = (ai , zi ). For the sake of simplicity assume that
if i < j and zi = zj then ai < aj . As the lift of the vector xj − xi , i < j, we choose

where

1


(λij , z¯j − z¯i ) ,
λij
λij = aj − ai +


(aj − ai )2 + |zj − zi |2 .

According to the recipe in [2], [3], [4], we always use the lift (−w,
¯ z¯) for the vector
xi − xj if (z, w) has been chosen as the lift of xj − xi . Hence we introduce the linear
forms
lij (x, y) = λij x + (¯
zj − z¯i )y,
lij (x, y) = (zj − zi )x + λji y,

i < j;
i > j.

Define P to be the N × N coefficient matrix of the binary forms pi (x, y) defined
by (1.1) using the above lij ’s. The second conjecture that we are interested in can

now be formulated as follows.
Conjecture 1.2. (Atiyah and Sutcliffe [3, Conjecture 2]; see also [4]) If rij =
|xj − xi |, then
| det(P )| ≥


(2λij rij ).
i

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52