tanigawa12. 122KB Jun 04 2011 12:09:35 AM

1

Journal of Integer Sequences, Vol. 11 (2008),
Article 08.2.3

2
3

47

6
23 11

On the Gcd-Sum Function
Yoshio Tanigawa
Graduate School of Mathematics
Nagoya University
Chikusa-ku, Nagoya 464-8602
Japan
tanigawa@math.nagoya-u.ac.jp
Wenguang Zhai

School of Mathematical Sciences
Shandong Normal University
Jinan 250014, Shandong
P. R. China
zhaiwg@hotmail.com
Abstract
In this paper we give a unified asymptotic formula for the partial gcd-sum function.
We also study the mean-square of the error in the asymptotic formula.

1

Introduction

Pillai [6] first defined the gcd-sum (Pillai’s function) by the relation
g(n) :=

n
X

gcd(j, n),


(1)

j=1

The second-named author is supported by National Natural Science Foundation of China (Grant No.
10771127) and National Natural Science Foundation of Shandong Province(Grant No. Y2006A31).

1

where gcd(a, b) denotes the greatest common divisor of a and b. This is Sequence A018804
in Sloane’s Online Encyclopedia of Integer Sequences. Pillai [6] proved that
X ϕ(n)
g(n) = n
,
d
d|n

where ϕ(n) is Euler’s function. This fact was proved again by Broughan [2]. He also obtained
the asymptotic formula of the partial sum function

X
Gα (x) :=
g(n)n−α
n≤x

for any α ∈ R, which was further improved in Bordell`es [1] (the case α = 0) and Broughan
[3] (the general case) respectively.
The estimate of Gα (x) is closely related to the well-known Dirichlet divisor problem. For
any x > 0, define
X
∆(x) :=
d(n) − x(log x + 2γ − 1),
n≤x

where d(n) denotes the Dirichlet divisor function and γ is Euler’s constant. Dirichlet first
proved that ∆(x) = O(x1/2 ). The exponent 1/2 was improved by many authors. The latest
result reads
∆(x) ≪ x131/416 (log x)26947/8320 ,
(2)


due to Huxley [4]. It is conjectured that

∆(x) = O(x1/4+ε ),

(3)

which is supported by the classical mean square result
Z T
ζ 4 (3/2) 3/2
∆2 (x)dx = 2
T + O(T log5 T )

ζ(3)
1

(4)

proved by Tong [7].
In the sequel of this paper, θ denotes the number defined by
θ := inf{a | ∆(x) ≪ xa }.

Broughan [3] proved that
(1) If α ≤ 1 + θ, then

x2−α log x
x2−α
Gα (x) =
+
(2 − α)ζ(2) (2 − α)ζ(2)


2γ −

(5)

ζ ′ (2)
1

2−α
ζ(2)




+ O(xθ+1−α+ε );

(6)

(2) If 1 + θ < α < 2, then
x2−α
x2−α log x
+
Gα (x) =
(2 − α)ζ(2) (2 − α)ζ(2)
+ O(1);


2γ −

ζ ′ (2)
1


2−α
ζ(2)


(7)

2

(3) If α = 2, then
log2 x log x
Gα (x) =
+
2ζ(2)
ζ(2)



ζ ′ (2)
2γ −
ζ(2)




+ O(1);

(8)

(4) If α > 2, then
x2−α log x
x2−α
Gα (x) =
+
(2 − α)ζ(2) (2 − α)ζ(2)
+


2γ −

ζ 2 (α − 1)
+ O(xθ+1−α+ε ).

ζ(α)

1
ζ ′ (2)

2−α
ζ(2)


(9)

In this paper we first give a unified asymptotic formula of Gα (x). Before stating our
result, we introduce the following definitions:
 2−α


x
log x
1
x2−α

ζ ′ (2)



 (2 − α)ζ(2) + (2 − α)ζ(2) 2γ − 2 − α − ζ(2) , if α 6= 2;
(10)
Mα (x) :=

 ′
2

log
x

ζ
(2)


log x,
if α = 2,


+

2ζ(2)
ζ 2 (2) ζ(2)
and


0,



Z



 β

We then have

if β ≤ 0;



∆(x)x−β−1 dx,
if 0 < β < 1;
0
Z ∞
c(β) :=



∆(x)x−2 dx, if β = 1;
2γ − 1 +



1
 2
ζ (β),
if β > 1.

(11)

Theorem 1. Suppose α ∈ R is fixed. Then

Gα (x) = Mα (x) + C(α) + O(xθ+1−α+ε ),

where

0,






c(α − 1)/ζ(α),



c(1) 2ζ ′2 (2) − ζ(2)ζ ′′ (2) 2γζ ′ (2)
C(α) :=
+
− 2
,


ζ(2)
2ζ 3 (2)
ζ (2)

 2


ζ (α − 1)


,

ζ(α)

if α ≤ 1;

if 1 < α < 2;
if α = 2;
if α > 2.

Remark 1. Theorem 1 slightly improves Broughan’s result in the case 1 + θ < α ≤ 2.
Define the error term Eα (x) by

Eα (x) := Gα (x) − Mα (x) − C(α).
For this error term, we have the following mean square results.
3

(12)

Theorem 2. For any fixed α ∈ R, we have the asymptotic formula
Z T
x2α−2 Eα2 (x)dx = C2 T 3/2 + O(T 5/4+ε ),

(13)

1

where


1 X 2
C2 = 2
h (n)n−3/2 ,
6π n=1 0

h0 (n) =

X

µ(m)d(l)m−1/2 .

n=ml

Corollary 1. If α < 7/4, then
Z

1

T

Eα2 (x)dx =

3C2 7/2−2α
T
+ O(T 13/4−2α+ε ).
7 − 4α

(14)

For the upper bound of Eα (x), we propose the following conjecture.
Conjecture. The estimate
Eα (x) ≪ x5/4−α+ε
holds for any α ∈ R.

Throughout this paper, ε denotes an arbitrary small positive number which does not
need to be the same at each occurrence. When the summation conditions of a sum are
complicated, we write the conditions separately like SC(Σ).

2

Proof of Theorem 1

In this section we prove Theorem 1. First we prove the following
P
Lemma 2.1. Suppose β ∈ R \ {0} and define Dβ (x) := n≤x d(n)n−β . Then we have


x1−β log x
1
x1−β
Dβ (x) =
2γ −
+
1−β
1−β
1−β
−β
−β
+ c(β) + x ∆(x) + O(x )
for β 6= 1

(15)

and

log2 x
+ 2γ log x + c(1) + ∆(x)x−1 + O(x−1 ),
2
where c(β) is defined in (1.10).
D1 (x) =

4

(16)

Proof. First consider the case β < 1. By integration by parts we have
Z x
X
−β
t−β dD(t)
Dβ (x) =
d(n)n =
=

0 0).

(20)

0

and
β

Z

x



∆(t)t−β−1 dt ≪ x−β

R∞
Especially, (2.6) shows that the infinite integral 0 ∆(t)t−β−1 dt converges in the case β > 0.
The assertion of Lemma 2.1 for the case β < 1 follows from
(2.3), (2.5) and (2.6).
P∞
Next consider the case β > 1. Since the infinite series n=1 d(n)n−β converges to ζ 2 (β),
we may write
X
Dβ (x) = ζ 2 (β) −
d(n)n−β .
(21)
n>x

5

By integration by parts and (2.6) we get
Z ∞
Z
X
−β
−β
d(n)n =
t dH(t) +
x

n>x

Z



t−β d∆(t)

x



−β

Z

t

∆(t)|∞
x



(log t + 2γ)dt + t

∆(t)t−β−1 dt
x
x


x1−β log x
x1−β
1
=−

2γ −
− x−β ∆(x) + O(x−β ).
1−β
1−β
1−β

=

−β

(22)

The assertion of Lemma 2.1 for the case β > 1 follows from (2.7) and (2.8).
Finally consider the case β = 1. We have
X
D1 (x) = 1 +
d(n)n−1
=1+

1 0 is any fixed constant. If 1 ≪ N ≪ xA , then
 √
x1/4 X d(n)
π
∆(x) = √
cos 4π nx −
+ O(xε + x1/2+ε N −1/2 ).
4
π 2 n≤N n3/4
It suffices to evaluate the integral

R 2T
T

x2α−2 Eα2 (x)dx. Let

y = T 1−ε .

By (2.12) we have
x

α−1

X µ(m)  x 
X µ(m)  x 
Eα (x) =


+
+ O(log x)
m
m
m
m
m≤y
y≤m≤x
=: F1 (x) + F2 (x) + O(log x),

say. For F2 (x), we have ∆(x/m) ≪ (x/y)1/3 ≪ T ε , therefore
X 1  x 
F2 (x) ≪
≪ T ε.

m
m
y 1,

where M (s) is regular for ℜs > 1/2. Thus
X
h21 (n) ≪ x log3 x.
n≤x

From the above estimates we get
B(T ) =

X
n≤y

=
=


X

n=1

X



h20 (n)n−3/2 + O 

X

yy

!

h20 (n)n−3/2 + O(y −1/2 log3 y).

(31)

n=1

Next we consider the integral of S2 (x). By the first derivative test we get
Z

T

2T

S2 (x)dx ≪ T

X

2

d(n1 )d(n2 )
1
q
q
5/4
3/4

(m1 m2 ) (n1 n2 ) n1 − n2
m1
m2

1
d(n1 )d(n2 )


3/4
n1 m 2 − √ n2 m 1
2 (n2 m1 n1 m2 )
X d3 (m)d3 (n)
1


≪T
3/4
3/4
n m
| n − m|
2

≪T

X

n,m≤y
n6=m

≪T

X

n,m≤y 2
√ √
| n− m|≥ 21 (mn)1/4

1
d3 (m)d3 (n)


3/4
3/4
n m
| n − m|

X

+T

n,m≤y 2
√ √
0

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52