FuzzyIntegral_Formateado. 108KB Jun 04 2011 12:08:41 AM

ACTA UNIVERSITATIS APULENSIS

No 13/2007

SOME REMARKS ABOUT FUZZY INTEGRATION

Angel Garrido

Abstract. Symmetrically with the idea of Fuzzy Differentiation, we
need a concept and a powerful mathematical tool: the Fuzzy Integration.
Previously, we need to analyze the different types of fuzziness acting on
functions, their domains, the way to the fuzziness from the independent to
dependent variables, the apparition of Fuzzy Bunch of Functions and so on.
2000 Mathematics Subject Classification: 03E72.
Keywords and phrases: Fuzzy Set Theory, Fuzzy Function Theory, Fuzzy
Measure Theory, Fuzzy Mathematical Analysis, Artificial Intelligence.
1. Introduction
The first step will be the analysis of different aspects as appear the fuzziness appears into the functions, according to the characteristics of such applications, their domain and range.
The second of such steps will be the study of adequate ways of integration
(fuzzy integration).
2. Analyzing the fuzziness of functions

We can find three different kinds of fuzzy functions:
1) Crisp Function propagating the fuzziness, from the independent variable to dependent variable.
2) Crisp Function with fuzzy constraint.
3) Fuzzy Function in itself.

3

A. Garrido - Some remarks about Fuzzy Integration
As first case, when f is a single fuzzifying function:
Suppose defined f : U → V, crisp function between universal sets. The
fuzzy extension function propagates the fuzziness, or ambiguity, from the
independent variable
to dependent variable. Such extension function defines
 
˜
the image, f U , of fuzzy set U˜ .
So, if we suppose the crisp function:
f (x) = 5˜
x+2
with domain:

A = {0|0.8, 1|0.7, 2|0.6, 3|0.5}
and range:
[2, 17]
The propagation of fuzziness reaches B, giving a new fuzzy set:
B ∗ = {2|0.8, 7|0.7, 12|0.6, 17|0.5}


The fuzzifying function, f , is a mapping from the same domain to a new
range: the family of parts, subsets or power set of the old range:
f˜ : U → P˜ (V )
Such fuzzifying function will be identified with a fuzzy relation, R, on
U × V , in this way:


µf (x) (y) = µR (x, y) , ∀ (x, y) ∈ U × V
Example. Let A = {2, 3, 4} and B = {2, 3, 4, 6, 8, 9, 12} be two crisp
sets. And suppose also the fuzzifying function defined from the elements of
A to the power set P˜ (B) , established by:
f˜ (2) = B1 , f˜ (3) = B2 , f˜ (4) = B3
with:

o
n
P˜ (B) = {B1 , B2 , B3 } = f˜ (2) , f˜ (3) , f˜ (4)
4

A. Garrido - Some remarks about Fuzzy Integration
being:
B1 = {2|0.5, 4|1, 6|0.5} , B2 = {3|0.5, 6|1, 9|0.5} , B3 = {4|0.5, 8|1, 12|0.5}
So, for instance:

f˜ : 2 ∈ A → B1
f˜ : 3 ∈ A → B2
f˜ : 4 ∈ A → B3

And also it is possible to introduce the α −cut operation on the fuzzifying
function:

{2, 4, 6} , if 0 ≤ α ≤ 0.5
f :2→
{4} , if 0.5 ≤ α ≤ 1


{3, 6, 9} , if 0 ≤ α ≤ 0.5
f :3→
{6} , if 0.5 ≤ α ≤ 1
f :4→



{4, 8, 12} , if 0 ≤ α ≤ 0.5
{8} , if 0.5 ≤ α ≤ 1

corresponding to B1 , B2 and B3 ,respectively.
As second case, when the function is with fuzzy constraints: Let U and
V be universal and crisp sets. And let A ⊆ U and B ⊆ V be fuzzy subsets
of such universal sets. We will consider the function:
f :U →V
If such function verifies the condition, on the membership degrees of the
elements in the domain of f :
µA (x) ≤ µB (f (x)) , ∀x ∈ A
then we call f a function with constraints.

Observe the fuzzy character of both, domain and range of f.
As example: Let A = {1|0.3, 2|0.6} and B = {3|0.5, 6|0.7} be two fuzzy
sets, and we consider the function: y = f (x) = 3x, with x ∈ A and y ∈ B.
In this case, the previous condition holds, because:
5

A. Garrido - Some remarks about Fuzzy Integration
if x = 1, then y = 3, being: µA (1) = 0.3 ≤ µB (f (1)) = µB (3) = 0.5
and
if x = 2, then y = 6, being: µA (2) = 0.6 ≤ µB (f (2)) = µB (6) = 0.7
In the third case, we depart from a fuzzy set of crisp functions:
{fi }ni=1
with:
fi : U → V
fi |µf˜ (fi )
Then, we define the Fuzzy Bunch of Functions as:


f˜ ≡ fi | µf˜ (fi )


In particular, when n = 3, we have:



f˜ ≡ f1 | µf˜ (f1 ) , f2 | µf˜ (f2 ) , f3 | µf˜ (f3 )
3. Fuzzy Integration
Firstly, we analyze the integration of fuzzifying functions in non-fuzzy
intervals, and then, also in fuzzy intervals.
Let [a, b] ⊂ R be a crisp interval; therefore, non-fuzzy. And let f˜ (x) be
the fuzzy value of fuzzifying function, where x ∈ [a, b] .
Then, we denote the Integral of such fuzzifying function in this interval
as:
Z

b

f˜ or I˜ (a, b)

a


and defined as:
6

A. Garrido - Some remarks about Fuzzy Integration

I˜ (a, b) ≡

Z

b

fα−

(x) dx +

Z

b

fα+


(x) dx |α

a

a





α∈[0,1]

where fα− and fα+ are α − cut functions of f˜ (x) .
We can reach the α − cut functions, fα− and fα+ , from the fuzzifying
function.
It is possible to integrate both functions, separately:
Z b

˜

fα− (x) dx,
Iα =
a

I˜α+ =

Z

b

fα+ (x) dx.

a

So, we conclude that the possibility of I˜α− to be a member of I˜ (a, b) the total integration - is equal to α. And analogously: the possibility of I˜α+
to be a member of I˜ (a, b) is equal to α.
As example, let:
f˜ = {f1 |0.2, f2 |0.3, f3 |0.3, f4 |0.5}
in the universal set:
U = [3, 5]

a crisp interval, with:
f1 (x) = 2x + 1,
f2 (x) = 3x2 + 2,
f3 (x) = 4x3 + 3,
f4 (x) = 5x4 + 4.
We will obtain the integration of such fuzzy function.
With f = f1 , the integral at α = 0.2 will be:
7

A. Garrido - Some remarks about Fuzzy Integration

Z

Iα (3, 5) =

3

Therefore:

5



5
(2x + 1) dx = x2 + x 3 = 18.

I˜0.2 (3, 5) = {18|0.2} .
With f = f2 , the integral at α = 0.3 will be:
Z 5


5
3x2 + 2 dx = x3 + 2x 3 = 102.
Iα (3, 5) =
3

Therefore:

I˜0.3 (3, 5) = {102|0.3} .
With f = f3 , the integral at α = 0.4 will be:
Z 5


5
Iα (3, 5) =
4x3 + 3 dx = x4 + 3x 3 = 550.
3

Therefore:

I˜0.4 (3, 5) = {550|0.4} .
With f = f4 , the integral at α = 0.5 will be:
Z 5


5
5x4 + 4 dx = x5 + 4x 3 = 2890.
Iα (3, 5) =
3

Therefore:

I˜0.5 (3, 5) = {2890|0.5} .
So, the final integration will be:
I˜ (3, 5) = {18|0.2, 102|0.3, 550|0.4, 2890|0.5} .
The other situation will be when integrating crisp function in fuzzy interval, [A, B] , with boundaries determined by A and B, fuzzy sets.

8

A. Garrido - Some remarks about Fuzzy Integration
We denote such integration I (A, B), which is defined through the membership function:
µI(A,

B)

(z) =

z=

[min {µA
Rmax
y
x f (u)du

(x) , µB (y)}]

As illustrative example, we shows the integration of f (x) = 2, defined on
the fuzzy interval [A, B] , with A = {4|0.8, 5|1, 6|0.4} and B = {6|0.7, 7|1, 8|0.2} .
Then, we have:
[a, b] z =
[4, 6]
[4, 7]
[4, 8]
[5, 6]
[5, 7]
[5, 8]
[6, 6]
[6, 7]
[6, 8]

Rb
a

2dx = 2 (b − a)
4
6
8
2
4
6
0
2
4

min {µA (a) , µB (b)} ;
min {µA (4) , µB (6)} = 0.7;
min {µA (4) , µB (7)} = 0.8;
min {µA (4) , µB (8)} = 0.2
min {µA (5) , µB (6)} = 0.7;
min {µA (5) , µB (7)} = 1;
min {µA (5) , µB (8)} = 0.2;
min {µA (6) , µB (6)} = 0.4;
min {µA (6) , µB (7)} = 0.4;
min {µA (6) , µB (8)} = 0.2.

So, the integration values are:
I˜ (A, B) = {0|0.4, 2|0.7, 4|1, 6|0.8, 8|0.2} .
Observe that integrating in [5, 6] and [6, 7] ,we obtain the integration value
2, with possibilities equal to 0.4 and 0.7, respectively. In such case, we take
as possibility to be 2 the integration value by the maximum between both
values:
Max{0.4, 0.7} = 0.7 = membership degree of 2 as element of I˜ (A, B) .
In general, we must obviously distinguish between cases, according to the
presence of a crisp domain or a fuzzy domain, D, for the function f.


Let f be a fuzzifying function on [A, B], fuzzy interval, where A and B
will be fuzzy sets. Then, we have:


µI(A,

B)

(Z) = max [min {µA (X) , µB (Y )}] .
9

A. Garrido - Some remarks about Fuzzy Integration
That is:
Z=


I f (X, Y

)=

ZY

fα+ (u) du +

X

ZY

fα− (u) du

X


where fα+ and fα− are α-cut functions of the fuzzifying function f , or Fuzzy
Bunch: {fi }i∈I .
Therefore:




∃i1 ∈ I : fα+ = fi1 ∈ f

∃i2 ∈ I : fα− = fi2 ∈ f .

and

So:


n
I (A, B) = z | µ∼

I (A,B)

o
(z)

z∈U

n
o
∼+
∼−
= I f + I f | α ∈ [0, 1] .

In the aforementioned case:


I (A, B) = {z | max [min {µA (X) , µB (Y )}]}
with: X ⊆ A, Y ⊆ B, being:
Z=

Z

fi1 +

Z

fi2 .

For instance, let:
A = {1|0.1, 2|0.2, 3|0.3} and B = {4|0.4, 5|0.5, 6|0.6}
be fuzzy sets. Also, let:


f = {f1 |0.2, f2 |0.4}
be a fuzzy bunch of functions.
Then, we have the fuzzy interval [A, B] .
Taking:
fα+ = f1
fα− = f2
10

A. Garrido - Some remarks about Fuzzy Integration
we obtain:
z=

Z

f1 +

Z

f2 =

Z

fα+ +

Z

fα− .

We obtain the subsequent Fuzzy Integration Table:
[a,
[1,
[1,
[1,
[2,
[2,
[2,
[3,
[3,
[3,

b]
4]
5]
6]
4]
5]
6]
4]
5]
6]

RB ∼
f
A
17
43
2

27
7
23
2

17
7
2

8
27
2

min{µA (X) , µB (Y )};
min{µA (1) , µB (4)} = 0.1;
min{µA (1) , µB (5)} = 0.1;
min{µA (1) , µB (6)} = 0.1;
min{µA (2) , µB (4)} = 0.2;
min{µA (2) , µB (5)} = 0.2;
min{µA (2) , µB (6)} = 0.2;
min{µA (3) , µB (4)} = 0.3;
min{µA (3) , µB (5)} = 0.3;
min{µA (3) , µB (6)} = 0.3.

As consequence, in a first step:




I (A, B) = 17|0.1, 43
|0.1, 27|0.1, 7|0.2, 23
|0.2, 17|0.2, 72 |0.3, 8|0.3, 27
|0.3 .
2
2
2

But we will consider the maximum membership degree, when it the same
element appears, as in the case of x = 17, where:
17| max {0.1, 0.2} = 17|0.2.
Therefore, by substitution and reordering:


I (A, B) = {3.5|0.3, 7|0.2, 8|0.3, 11.5|0.2, 13.5|0.3, 17|0.2, 21.5|0.1, 27|0.1} .
4. Conclusion
I hope to contribute with these remarks to the study of Fuzzy Integration
and therefore, of Fuzzy Measure.

11

A. Garrido - Some remarks about Fuzzy Integration
References
[1] Dubois and Prade (eds.), Fundamentals of Fuzzy Sets, The Handbooks
of Fuzzy Set Series, Kluwer Academic Series, Dordrecht, Netherlands, 2000.
[2] Garrido, “Heuristic Functions, Primitive Recursion and Recursivity”,
ICCMSE, Loutraki-Khorintos, 2005. Lecture Series on Computer Sciences
and Computational Science, Vol. 4A, pp. 234-238, VSP-Brill Publishing Co.,
Netherlands, 2005.
[3] Pedrycz, Fuzzy Control and Fuzzy Systems, Wiley & Sons, New York,
1993.
[4] Wang, A Course in Fuzzy Systems and Control. Prentice-Hall, N. J.,
1997.
[5] Wang and Klir, Fuzzy Measure Theory. Plenum Press, N. J., 1992.
Author:
´
Angel
Garrido Bull´on
Department of Fundamental Mathematics.
Faculty of Sciences UNED Senda del Rey, 9.
28040-Madrid (Spain)
email: algbmv@telefonica.net

12

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52