Daniel acta 9. 99KB Jun 04 2011 12:08:35 AM

ACTA UNIVERSITATIS APULENSIS

No 9/2005

THE UNIVALENT CONDITION FOR AN INTEGRAL
OPERATOR
ON THE CLASSES S (α) AND T2

Daniel Breaz and Nicoleta Breaz
Abstract.In this paper we present a few conditions of univalency for the
operator Fα,β on the classes of the univalent functions S (p) and T2 . These are
actually generalizations(extensions) of certain results published in the paper
[1].
AMS 2000 Subject Classification: 30C45.
Keywords and phrases: Unit disk, analytical function, univalent function,integral operator.
1.Introduction
Let be the class of analytical functions, A = {f : f = z + a2 z 2 + ...} , z ∈ U ,
where U is the unit disk , U = {z : |z| < 1} and denote S the class of univalent
functions in the unit disk.
Let p the real number with the property 0 < p ≤ 2. We define the class
S (p) as the class

of the functions f ∈ A, that satisfy the conditions f (z) 6= 0

′′
and (z/f (z)) ≤ p, z ∈ U and if f ∈ S (p) then the following property is true

2 ′

z f (z)

2
f 2 (z) − 1 ≤ p |z| , z ∈ U, relation proved in [3].

We denote
2 ′ with T2 the class of the univalent functions that satisfy the


(z)
condition zf 2f(z)
− 1 < 1, z ∈ U , and also have the property f ′′ (0) = 0.
These functions have the form f = z + a3 z 3 + a4 z 4 + .... For 0 < µ < 1 we have

a subclass of functions
by Tµ,2 , containing the functions f ∈ T2 that
2 denoted
z f ′ (z)
satisfy the property f 2 (z) − 1 < µ < 1, z ∈ U .
Next we present a few well known results related to these classes, results
on which shall rely in this paper.
63

Daniel Breaz and Nicoleta Breaz - The univalent condition for an integral ...
The Schwartz Lemma. Let the analytic function g be regular in the unit
disc U and g (0) = 0. If |g (z)| ≤ 1, ∀z ∈ U, then
|g (z)| ≤ |z| , ∀z ∈ U

(1)

and equality holds only if g (z) = εz, where |ε| = 1.
Theorem 1.[2]. Let α ∈ C, Reα > 0 and f ∈ A. If
1 − |z|2Reα
Reα




zf ′′ (z)



≤ 1, ∀z ∈ U
f (z)

(2)

then ∀β ∈, Reβ ≥ Reα, the function


Fβ (z) = β

Zz
0


1/β

tβ−1 f ′ (t) dt

(3)

is univalent.
Theorem 2.[1]. Let fi ∈T2 , fi (z) = z + ai3 z 3 + ai4 z 4 + ..., ∀i = 1, 2, so that
α, β ∈ C, Reα ≥

6
, Reβ ≥ Reα.
|α|

(4)

If |fi (z)| ≤ 1, ∀z ∈ U, i = 1, 2 then ∀β ∈ C the function
 z
 Z


Fα,β (z) = β

tβ−1

0

f1 (t)
t

!1

α

·

f2 (t)
t

!1


1
β

α

dt ∈ S.

(5)

Theorem 3.[1]. Let fi ∈T2,µ , fi (z) = z + ai3 z 3 + ai4 z 4 + ..., ∀i = 1, 2, so that
α, β ∈ C, Reα ≥

2 (µ + 2)
, Reβ ≥ Reα.
|α|

(6)

If |fi (z)| ≤ 1, ∀z ∈ U, i = 1, 2 then ∀β ∈ C the function
 z

 Z

Fα,β (z) = β

0

tβ−1

f1 (t)
t

!1

α

·

f2 (t)
t


!1

α

1
β

dt ∈ S.

(7)

Theorem 4.[1]. Let fi ∈S (p) , 0 < p < 2, fi (z) = z + ai3 z 3 + ai4 z 4 + ..., ∀i =
1, 2, so that
64

Daniel Breaz and Nicoleta Breaz - The univalent condition for an integral ...

2 (p + 2)
, Reβ ≥ Reα.
|α|


α, β ∈ C, Reα ≥

(8)

If |fi (z)| ≤ 1, ∀z ∈ U, i = 1, 2 then ∀β ∈ C the function
 z
 Z

Fα,β (z) = β

tβ−1

0

f1 (t)
t

!1


α

·

f2 (t)
t

!1

1
β

α

2.Main results

dt ∈ S.

(9)


Theorem 5. Let M ≥ 1,fi ∈T2 , fi (z) = z + ai3 z 3 + ai4 z 4 + ..., ∀i = 1, 2, so
that
α, β ∈ C, Reα ≥

(4M + 2)
, Reβ ≥ Reα.
|α|

(10)

If |fi (z)| ≤ M, ∀z ∈ U, i = 1, 2 then ∀β ∈ C the function
Fα,β (z) =
Proof.

 z
 Z

β



tβ−1

0

f1 (t)
t

We consider the function h (z) =

!1

α

f2 (t)
·
t

Rz  f1 (t)  α1
t

0

·



!1

1
β

α

f2 (t)
t

dt

1

α

∈ S.

(11)



dt.

We observe that h (0) = h′ (0) − 1 = 0.
By calculating the derivatives of the order I and II for this function we
obtain:


h (z) =

f1 (t)
t

!1

α

f2 (t)
·
t

!1

α

(12)

respectively
h′′ (z) =

1
1 ′
h (z) · B1 + h′ (z) · B2
α
α

where

65

(13)

Daniel Breaz and Nicoleta Breaz - The univalent condition for an integral ...

Bk =

z
zfk′ (z) − fk (z)
·
, k = 1, 2.
fk (z)
z2
!

We calculate the fraction
′′

zh (z)
=
h′ (z)

zh′′ (z)
h′ (z)

z · α1 h′ (z) ·

(14)

and we obtain:
2
P

k=1

h′ (z)

Bk

2
1 X
Bk , ∀z ∈ U.
=z· ·
α k=1

(15)

Replacing Bk , k = 1, 2, in formula (15) we obtain:
1
zh′′ (z)
=

h (z)
α

zf1′ (z)
1
−1 +
f1 (z)
α
!

zf2′ (z)
−1 .
f2 (z)
!

(16)

We evaluate the modulus and we multiply in both terms of the relation
2Reα
(16) with 1−|z|
, obtain:
Reα
1 − |z|2Reα
Reα





!
2
zh′′ (z)
z 2 f ′ (z) |f (z)|
1 − |z|2Reα X
i




i



+1 .

h (z)
|α| Reα i=1 fi2 (z) |z|

(17)

Because |fi (z)| ≤ M, ∀z ∈ U , ∀i = 1, 2 and applying Schwarz Lemma we
obtain that
|fi (z)|
≤ M, ∀z ∈ U, ∀i = 1, 2.
|z|

(18)

We apply this relation in the above inequality and we obtain:
1 − |z|2Reα
Reα
But





!
2
z 2 f ′ (z)
zh′′ (z)
1 − |z|2Reα X




i



M + 1 .
h (z)
|α| Reα i=1 fi2 (z)







z 2 f ′ (z)
z 2 f ′ (z)
z 2 f ′ (z)







i
i
i
= 2
2
− 1 + 1 ≤ 2
− 1 + 1, ∀z ∈ U, ∀i = 1, 2.
fi (z)


fi (z)
fi (z)


2 ′



(z)
Because f ∈ T2 , so zf 2f(z)
− 1 < 1.
Applying this property and (20) in (19), obtain that:

66

(19)

(20)

Daniel Breaz and Nicoleta Breaz - The univalent condition for an integral ...

2Reα

1 − |z|
Reα





2Reα
zh′′ (z)
(4M + 2)
1

|z|
(4M + 2)





, ∀z ∈ U.
h (z)
|α| Reα
|α| Reα

Because Reα >

(4M +2)
,
|α|

(21)

we obtain that

1 − |z|2Reα
Reα



zh′′ (z)



≤ 1, ∀z ∈ U.
h (z)

(22)

Applying Theorem 1 we obtain that Fα,β ∈ S.

Remark. Theorem 5 is a generalization of the Theorem 2.
Theorem 6. Let M ≥ 1, fi ∈T2,µ , fi (z) = z + ai3 z 3 + ai4 z 4 + ..., ∀i = 1, 2,
so that
α, β ∈ C, Reα ≥

2 (µM + M + 1)
, Reβ ≥ Reα.
|α|

(23)

If |fi (z)| ≤ M, ∀z ∈ U, i = 1, 2 then ∀β ∈ C the function
 z
 Z

Fα,β (z) = β

0

tβ−1

f1 (t)
t

!1

α

·

f2 (t)
t

!1

α

1
β

dt ∈ S.

(24)

Proof. Considering the same steps as in the above proof we obtain:
1 − |z|2Reα
Reα





!
2
zh′′ (z)

z 2 f ′ (z)
1 − |z|2Reα X




i
− 1 M + M + 1 .



h (z)
|α| Reα i=1 fi2 (z)

(25)

2 ′ (z)
− 1 < µ, ∀z ∈ U.
But f ∈ T2,µ , which implies that zf 2f(z)
In these conditions we obtain:



1 − |z|2Reα
Reα





zh′′ (z)
2 (µM + M + 1)


, ∀z ∈ U.


h (z)
|α| Reα

By applying the relation (23) we obtain that
67

1−|z|2Reγ
Reγ

(26)

′′
zh (z)
h′ (z) ≤ 1, ∀z ∈ U.

Daniel Breaz and Nicoleta Breaz - The univalent condition for an integral ...
So according to the Theorem 1 the function Fα,β is univalent.
Remark. Theorem 6 is a generalization of the Theorem 3.
Theorem 7. Let M ≥ 1, fi ∈S (p) , 0 < p < 2, fi (z) = z + ai3 z 3 + ai4 z 4 +
..., ∀i = 1, 2, so that
α, β ∈ C, Reα ≥

2 (pM + M + 1)
, Reβ ≥ Reα.
|α|

(27)

If |fi (z)| ≤ M, ∀z ∈ U, i = 1, 2 then ∀β ∈ C the function
Fα,β (z) =

 z
 Z

β



tβ−1

0

f1 (t)
t

!1

α

f2 (t)
·
t

!1

α

1
β

dt

∈ S.

(28)



Proof. Considering the same steps as in the above proof we obtain:
1 − |z|2Reα
Reα





!
2
z 2 f ′ (z)
zh′′ (z)

1 − |z|2Reα X




i
− 1 M + M + 1 .



h (z)
|α| Reα i=1 fi2 (z)

(29)

But f ∈ S (p) , so




z 2 f ′ (z)

− 1 ≤ p |z|2 , ∀z ∈ U.
2

f (z)

(30)

In these conditions we obtain:
1 − |z|2Reα
Reα
so,



2 
zh′′ (z)

1 − |z|2Reα X


p |z|2 M + M + 1 , ∀z ∈ U,


h (z)
|α| Reα i=1

1 − |z|2Reα
Reα



zh′′ (z)
2 (pM + M + 1)




.
h (z)
|α| Reα

By applying in (32) the relation (27) we obtain that
1, ∀z ∈ U.
68

(31)

(32)
1−|z|2Reγ
Reγ

′′
zh (z)
h′ (z) ≤

Daniel Breaz and Nicoleta Breaz - The univalent condition for an integral ...
So according to the Theorem 1 the function Fα,β is univalent.
Remark. Theorem 7 is a generalization of the Theorem 4.
References
[1] Breaz, D.,Breaz, N., The univalent conditions for an integral operator
on the classes S (p) and T2 , Preprint,2004.
[2] Pascu, N.N., An improvement of Becker’s univalence criterion, Proceedings of the Commemorative Session Simion Stoilow, Brasov, (1987), 43-48.
[3] Singh, V., On class of univalent functions, Internat. J. Math &Math.
Sci. 23(2000), 12, 855-857. [4] Yang, D., Liu, J., On a class of univalent
functions, Internat. J. Math &Math. Sci. 22(1999), 3, 605-610.
D. Breaz:
Department of Mathematics
”‘1 Decembrie 1918”’ University of Alba Iulia
Alba Iulia, str. N. Iorga, No. 11-13, 510009, Romania
E-mail address: dbreaz@uab.ro
N. Breaz:
Department of Mathematics
”‘1 Decembrie 1918”’ University of Alba Iulia
Alba Iulia, str. N. Iorga, No. 11-13, 510009, Romania
E-mail address: nbreaz@uab.ro

69

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52