getdoc4768. 90KB Jun 04 2011 12:04:20 AM

Elect. Comm. in Probab. 14 (2009), 224–231

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

ALMOST SURE LIMIT THEOREM FOR THE MAXIMA OF STRONGLY
DEPENDENT GAUSSIAN SEQUENCES
FUMING LIN 1
Department of Mathematics, Sichuan University of Science and Engineering, Huixin Road, Zigong
643000, Sichuan, China.
email: [email protected]
Submitted December 2, 2008, accepted in final form April 27, 2009
AMS 2000 Subject classification: 60F05; 62E20; 62F12; 62M10
Keywords: Almost sure central limit theorem, Strongly dependent sequence, Logarithmic average
Abstract
In this paper, we prove an almost sure limit theorem for the maxima of strongly dependent Gaussian sequences under some mild conditions. The result is an expansion of the weakly dependent
result of E. Cs´
aki and K. Gonchigdanzan.

1 Introduction and main result

In past decades, the almost sure central limit theorem (ASCLT) has been studied for independent
and dependent random variables more and more profoundly. Cheng et al.[CPQ98], Fahrner and
Stadtm¨
uller[FS98] and Berkes and Cs´
aki[BC01] considered the ASCLT for the maximum of i.i.d.
random variables. An influential work is Cs´
aki and Gonchigdanzan[CG02], which proved an
almost sure limit theorem for the maximum of stationary weakly dependent sequence.
Theorem A. Let X 1 , X 2 , · · · be a standardized stationary Gaussian sequence with rn = C ov(X 1 , X n+1 )
satisfying rn log n(log log n)1+ǫ = O(1) as n → ∞. Let Mk = maxi≤k X i . If an = (2 log n)1/2 ,
bn = (2 log n)1/2 − 12 (2 log n)−1/2 (log log n + log(4π)), then
lim

n→∞

1
log n

n
X

1
k=1

k

I(ak (Mk − bk ) ≤ x) = exp(−e−x ) a.s.,

(1)

where I is indicator function.
Shouquan Chen and Zhengyan Lin[CL06] extended the results in [CG02] to the non-stationary
case.
Leadbetter et al [LLR83] showed the following theorem.
Theorem B. Let X 1 , X 2 , · · · be a standardized stationary Gaussian sequence with rn = C ov(X 1 , X n+1 )
and Mn = max1≤i≤n X i . Let an = (2 log n)1/2 and bn = (2 log n)1/2 − 12 (2 log n)−1/2 (log log n +
1
RESEARCH SUPPORTED BY THE SCIENTIFIC RESEARCH FUND OF SICHUAN UNIVERSITY OF SCIENCE & ENGINEERING UNDER GRANT 2007RZ014.

224


Almost Sure Limit Theorem

225

log(4π)). If rn log n → r > 0, then




lim P an (Mn − bn ) ≤ x =

n→∞

Z


−∞




p
exp − e−x−r+ 2rz φ(z)dz,

(2)

where and in the sequel φ is standard normal density.
In the paper, we consider the ASCLT version of (2). The theorem below is useful in our proof.
Theorem C. [Leadbetter et al., 1983, Theorem 4.2.1, Normal Comparison Lemma] Suppose
X 1 , X 2 , · · · , X n are standard normal variables with covariance matrix Λ1 = (Λ1i j ), and Y1 , Y2 , · · · , Yn
similarly with covariance Λ0 = (Λ0i j ), and ρi j := max(|Λ1i j |, |Λ0i j |), assuming that maxi6= j ρi j =: δ <
1. Further, let u1 , · · · , un be real numbers. Then
|P(X j ≤ u j , j = 1, · · · , n) − P(Y j ≤ u j , j = 1, · · · , n)|
‚
Œ
X
u2i + u2j
1
0
≤ K1
|Λi j − Λi j | exp −

2(1 + ρi j )
1≤i< j≤n

(3)

with some positive constant K1 depending only on δ.
Throughout this paper, ξ1 , ξ2 , · · · is stationary dependent Gaussian sequence and Mn = max1≤i≤n ξi ,
Mk,n = maxk+1≤i≤n ξi . Let rn = C ov(ξ1 , ξn+1 ). If
rn log n → r ≥ 0, as n → ∞.

(4)

ξ1 , ξ2 , · · · was called as dependent: weakly dependent for r = 0 and strongly dependent for r > 0.
Let
ρn =

r
log n

, r defined in (4).


(5)

In the paper, a very natural and mild assumption is
|rn − ρn | log n(log log n)1+ǫ = O(1).

(6)

We mainly consider the ASCLT of the maximum of stationary Gaussian sequence satisfying (4),
under the mild condition (6), which is crucial to consider other versions of the ASCLT such as that
of the maximum of non-stationary strongly dependent sequence and the function of the maximum.
In the sequel, a = O(b) is denoted by a ≪ b, C is a constant which may change from line to line.
The main result is as follows.
Theorem. Let {ξn } be a sequence of stationary standard Gaussian random variables with covariances ri j = r| j−i| satisfying (4). Mk = maxi≤k ξi . The definitions of an , bn is the same as in
Theorem A. Assume ri j = r| j−i| satisfies (6). Then
n

 Z +∞

X

p
1 
lim
I ak (Mk − bk ) ≤ x =
exp − e−x−r+ 2rz φ(z)dz a.s..
n→∞ log n
k
−∞
k=1

1

(7)

Remark 1. When r = 0, clearly, Theorem induces Theorem A. When r > 0, ξ1 , ξ2 , · · · is strongly
dependent. We mainly focus on the proof of Theorem 1 for this case.
Remark 2. In the above definition of ρn , when n = 1, the definition is incompatible. In the paper,
we mainly consider the case of n → ∞. So here, n may be assumed in a neighborhood of +∞ and
the incompatibility doesn’t result in the invalidation of our argument.


226

Electronic Communications in Probability

2 Auxiliary lemmas
In this section, we present and prove some lemmas which are useful in our proof of the main
result.
Lemma 2.1. Assume |rn − ρn | log n(log log n)1+ǫ = O(1). Let the constants un be such that n(1 −
Φ(un )) is bounded where Φ is standard normal distribution function. Then
‚
Œ
n
X
u2k + u2n
|r j − ρn | exp −
sup k
≪ (log log n)−(1+ǫ) ,
(8)
2(1 + |ω j |)
1≤k≤n j=1

and
sup k
1≤k≤n

n
X
j=1

|r j − ρn | exp

‚

u2n



1 + |ω j |

Œ


≪ (log log n)−(1+ǫ) ,

(9)

where ω j = max{|r j |, ρn }.
Proof. The proof of (8). According to Leadbetter et al.[LLR83], we have σ1 (k) := supk 0, uniformly for 1 ≤ k ≤ n. For
the estimation of the bound of T2 , we can let p = [nα ]. We have
Œ
‚
X
vk2 + vn2
|r j − ρn |
T2 ≤ k exp −
2(1 + σ(p)) p+1≤ j≤n
Œ
‚
vk2 + vn2
nk
log n X
=

exp −
|r j − ρn |.
(15)
log n
2(1 + σ(p))
n p+1≤ j≤n
As rn log n → r, there must be a constant C such that rn log n ≤ C, for n ≥ 1. Using (12), similarly
to the proof of Lemma 6.4.1 in Leadbetter et al.[LLR83], it can be shown
Œ
‚
vk2 + vn2
nk
exp −
log n
2(1 + σ(p))
Œ
‚
vk2 + vn2
nk
exp −

log n
2(1 + C/ log nα )
 v 2 1/(1+C/ log nα ) 
 v 2 1/(1+C/ log nα )
nk 
=
exp − k
exp − n
log n
2
2
‚ 2
Œ
‚
Œ1/2
1/2
n  vn 2/(1+C/ log nα )
k2  vk 2/(1+C/ log nα )
≪C
log n n
log k k
≪ C n(C/ log n

α

)/(1+C/ log nα )

= O(1),

(16)

and
log n
n

X

p+1≤ j≤n

|r j − ρn | ≤

X

1

αn p+1≤ j≤n

|r j log j − r| + r


log n

.
1 −
n p+1≤ j≤n
log j

1

X

(17)

Consider the first term on the right-hand side, using (6), we have
1

X

αn p+1≤ j≤n

|r j log j − r| ≪

1

X

αn p+1≤ j≤n

(log log j)−(1+ǫ) ≪ (log log n)−(1+ǫ) .

According to Leadbetter et al.[LLR83](page 135), we can write
‚
Œ
Z1
1 X
1
log n
| log x|d x ≪ (log log n)−(1+ǫ) .
=O
1 −
n p+1≤ j≤n
log j
α log n 0

(18)

(19)

Combining (15), (16), (17), (18)and (19), we have T2 ≪ (log log n)−(1+ǫ) . Clearly (8) follows,
(9) does similarly. The proof is completed.
e1 , ξ
e2 , · · · , ξ
en be standard stationary Gaussian variables with constant covariance
Lemma 2.2. Let ξ
ei and
e n = maxi≤n ξ
ρn = r/ log n and ξ1 , ξ2 , · · · , ξn satisfy the conditions of the Theorem. Denote M
Mn = maxi≤n ξi . Assume n(1 − Φ(un )) is bounded and (6) is satisfied. Then
e n ≤ un ))| ≪ (log log n)−(1+ǫ)
|E(I(Mn ≤ un ) − I( M

Proof. Using Theorem C and Lemma 2.1, the proof can be gained simply.

(20)

228

Electronic Communications in Probability

Lemma 2.3. Let η1 , η2 , · · · be a sequence of bounded random variables. If
Var

‚

n
X
1
k=1

k

ηk

Œ

≪ log2 n(log log n)−(1+ǫ) for some ǫ > 0,

(21)

then
lim

1

n→∞

log n

n
X
1
k=1

k

(ηk − Eηk ) = 0 a.s.

(22)

Proof. The proof can be found in Cs´
aki and Gonchigdanzan[CG02].

3 Proof of main result
The proof of Theorem. When an = (2 log n)1/2 , bn = (2 log n)1/2 − 12 (2 log n)−1/2 (log log n +
log(4π)), we have un = x/an + bn satisfying n(1 − Φ(un )) < C. Under the assumptions, we firstly
show
1

lim

n→∞

log n

n
X
1
k=1

k

(I(Mk ≤ uk ) − P(Mk ≤ uk )) = 0 a.s.

(23)

Using Lemma 2.3, it is sufficient to prove
Var

‚

n
X
1
k=1

k

I(Mk ≤ uk )

Œ

≪ log2 n(log log n)−(1+ǫ) for some ǫ > 0.

(24)

1/2

Let ζ, ζ1 , ζ2 , · · · be independent standard normal variables. Obviously (1 − ρk )1/2 ζ1 + ρk ζ,
1/2

(1 − ρk )1/2 ζ2 + ρk ζ, · · · have constant covariance ρk = r/ log k. Define
1/2

1/2

Mk (ρk ) = max ((1 − ρk )1/2 ζi + ρk ζ) = (1 − ρk )1/2 max(ζ1 , ζ2 , · · · , ζk ) + ρk ζ
1≤i≤k

1/2

=: (1 − ρk )1/2 Mk (0) + ρk ζ.
Using the well-known c2 − inequality, the left-hand side of (24) can be written as

Var

‚

‚

n
X
1
k=1

≤ 2 Var
+Var

k
‚

I(Mk ≤ uk ) −
n
X
1

k=1
‚ n
X
k=1

=: L1 + L2 .

k

1
k

n
X
1
k=1

k

I(Mk (ρk ) ≤ uk ) +

I(Mk (ρk ) ≤ uk )

I(Mk ≤ uk ) −

Œ

n
X
1
k=1

k

n
X
1
k=1

I(Mk (ρk ) ≤ uk )

k

I(Mk (ρk ) ≤ uk )

ŒŒ

Œ

Almost Sure Limit Theorem

229

We will show L i ≪ log2 n(log log n)−(1+ǫ) , i=1,2. For i = 1, Write L1 as

E

‚

n
X
1

=E

k=1

‚

(I(Mk (ρk ) ≤ uk ) − P(Mk (ρk ) ≤ uk ))

k

n
X
1

k

k=1

1/2

(I(Mk (0) ≤ (1 − ρk )−1/2 (uk − ρk ζ))

−P(Mk (0) ≤ (1 − ρk )
=

Z

+∞

E
−∞

‚

n
X
1
k=1

k

=:

+∞

E
−∞

‚

n
X
1

k

k=1

−1/2

1/2
(uk − ρk ζ))

Œ2
1/2

(I(Mk (0) ≤ (1 − ρk )−1/2 (uk − ρk z))

−P(Mk (0) ≤ (1 − ρk )
Z

Œ2

ηk

Œ2

−1/2

1/2
(uk − ρk z))

Œ2

dΦ(z)

(25)

dΦ(z).

Write

E

‚

n
X
1
k=1

k

ηk

Œ2

=

n
X
1
k=1

k

E|ηk |2 + 2
2

X

1≤k

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52