Paper-12-20-2009. 83KB Jun 04 2011 12:03:09 AM

ACTA UNIVERSITATIS APULENSIS

No 20/2009

A CONVEXITY PROPERTY FOR
AN INTEGRAL OPERATOR ON THE CLASS UST (K, γ)

Daniel Breaz and Shigeyoshi Owa
Abstract. An integral operator Fn (z) for analytic functions fi (z) in the open
unit disk U is introduced. The object of the present paper is to discuss a convexity
property for the integral operator Fn (z) involving k-uniformly starlike functions of
order γ.
2000 Mathematics Subject Classification: 30C45.
Keywords and Phrases: starlike, convex, uniformly starlike.
1. Introduction
Let A be the class of functions f (z) of the form
f (z) = z +


X


aj z j

j=2

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}.
Let S ∗ (α) denote the subclass of A consisting of functions f (z) which satisfy
 ′ 
zf (z)
Re

(z ∈ U)
f (z)
for some α (0 ≦ α < 1). A function f (z) ∈ S ∗ (α) is said to be starlike of order α in
U. Also let K(α) be the subclass of A consisting of all functions f (z) which satisfy


zf ′′ (z)
Re 1 + ′

(z ∈ U)

f (z)
for some α (0 ≦ α < 1). A function f (z) in K(α) is said to be convex of order α
in U. Further let UST (k, γ) be the subclass of A consisting of functions f (z) which
satisfy


 ′ 
zf (z)

zf (z)
> k
− 1 + γ
Re
(z ∈ U)
f (z)
f (z)
107

D. Breaz, S. Owa - A convexity property for an integral operator on the class...


for some k (k ≧ 0) and γ (0 ≦ γ < 1). A function f (z) ∈ UST (k, γ) is said to be
k-uniformly starlike of order γ. This class was introduced by Aghalary and Azadi
[1] (also see [3]).
For fi (z) ∈ A and αi > 0, we define the integral operator Fn (z) given by
 !
Z z Y
n 
fi (t) αi
Fn (z) =
dt.
t
0
i=1

This integral operator Fn (z) was first defined by Breaz and Breaz [2]. From the
definition for the integral operator, it is easy to see that Fn (z) ∈ A.

2. Main Result
Our main result for the integral operator Fn (z) is contained in
Theorem 1.

Let fi (z) ∈ UST (ki , γi ) for each i = 1, 2, 3, · · · , n. If αi > 0 (i =
1, 2, 3, · · · , n) and
n
X
0<
(1 − γi )αi ≦ 1,
i=1

then Fn (z) ∈ K(γ), where

γ =1−

n
X

(1 − γi )αi .

i=1

Proof. Since

Fn′ (z)

=


n 
Y
fi (z) αi
i=1

and
Fn′′ (z)

=

n
X
i=1

we obtain


αi



fi (z)
z

αi −1 

z

zfi′ (z) − fi (z)
zfi (z)
n

X
F ′′ (z)
=1+
αi

1 + n′
Fn (z)
i=1




 Y

n
fj (z) αj
,
z
j=1j6=i


zfi′ (z)
−1 .
fi (z)


Thus we see, for fi (z) ∈ U ST (ki , γi ),


 ′ 
n
n
X
X
Fn′′ (z)
zfi (z)
Re 1 + ′
=1 +

αi Re
αi
Fn (z)
fi (z)
i=1

108


i=1

D. Breaz, S. Owa - A convexity property for an integral operator on the class...

> 1+

n
X
i=1


 ′

n
X
zfi (z)

αi ki
− 1 + γi −

αi
fi (z)
i=1

≧ 1−

n
X

(1 − γi )αi .

i=1

This completes the proof of our theorem.
Corollary 2.

Let f (z) ∈ U ST (k, γ). If α > 0 and
0 < α ≦

then

F1 (z) =

Z

0

z



f (t)
t

1
,
1−γ


dt ∈ K(δ),

where δ = 1 − (1 − γ)α.
Remark 3. If we take α = 1 in the corollary, then the Alexander operator defined
by
Z z
f (t)
F (z) =
dt
t
0

is convex of order γ. Therefore, letting k = 0, we see that f (z) ∈ S ∗ (γ) implies that
Z z
f (t)
dt ∈ K(γ).
F (z) =
t
0
References

[1] R. Aghalary and Ch. Azadi, The Dziok-Srivastava operator and k-uniformly
starlike functions, J. Inequ. Pure Appl. Math. 6 (2005), 1 - 7.
[2] D. Breaz and N. Breaz, Two integral operators, Stu. Univ. Babes-Bolyai,
Mathematica, 3 (2002), 3 (2002), 13 - 21.
[3] A. W. Goodman, On uniformly starlike functions. J. Math. Anal. Appl. 155
(1991), 364 - 370
Daniel Breaz
Department of Mathematics
”1 Decembrie 1918” University
Alba Iulia, 510009, Alba
Romania
109

D. Breaz, S. Owa - A convexity property for an integral operator on the class...

e-mail: [email protected]

Shigeyoshi Owa
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan
e-mail : [email protected]

110

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52