Belbachir1 . 47KB Jun 04 2011 12:08:24 AM
A GENERALIZED LAGRANGE IDENTITY AND
CAUCHY-BUNIAKOVSKY INEQUALITY
by
Hacene Belbachir
Abstract.The purpose of this Note is to give an extension to the Lagrange identity [1]
and [2], and then an extension to the Cauchy-Bouniakovsky inequality, since the right
hand side is positive. Finally, we give an application to polynomials.
1. Principal result
Let a 1 ,..., a s ; b1 ,..., b s ∈ ; and
where
∑ a k b m+1−k
M 2m =
means
∑ (−1) k k (∑ a m+1−k b k ) (∑ a k b m+1−k )
m
m
k =0
i = s k m +1− k
a b
i =1 i i
∑
∑
Theorem. generalized Lagrange identity
(ai b j − a j bi ) 2 r
i< j
M 2m =
2r
(ai b j − a j bi ) ( ai b j + a j bi )
i< j
∑
for m = 2r − 1
for m = 2r
Corollary. Generalized Cauchy-Buniakovsky inequality
M 2; 2 r −1 ≥ 0 ∀ai ; b j ∈ ℜ (for m = 2r − 1)
Remark. For m = 2r , we deduce the sign of M 2;m
If ai b j ≥ i & j then M 2;m ≥ 0 :
If ai b j ≤ i & j then M 2;m ≤ 0 :
Pour m = 1;2;3;4;... on a:
(∑ a )(∑ b ) − (∑ a b ) → Lagrange Identity :
= (∑ a )(∑ b ) − (∑ a b )(∑ a b )
M 2;1 =
M 2;2
2
2
i
2
i
i i
3
i
3
i
2
i i
1
2
i i
(∑ a
= (∑ a
M 2;3 =
4
i
M 2;4
5
i
M
)(∑ b ) + 3(∑ a b ) − 4(∑ a b )(∑ a b )
)(∑ b ) + 2(∑ a b )(∑ a b ) − 3(∑ a b )(∑ a b )
4
i
2 2 2
i i
5
i
3 2
i i
3
i i
3
i i
2 3
i i
4
i i
4
i i
2. Proof of the theorem
∑ a m+1 ∑ b m+1 − 1 ∑ a m b∑ ab m + L + (− 1)m m ∑ ab m ∑ a m b
We have
M 2;m =
m
1) if m = 2r − 1
M 2; 2 − r =
+ (− 1)r
=
b 2r +
∑ (− 1)k ( 2rk−1 )(∑ a 2r −k b k )(∑ a k b 2r −k ) +
r −1
( )(∑ a b ) + ∑ (− 1) ( )(∑ a
2 r −1
k
r r 2
k =1
2 r −1
k = r +1
( )(∑ a b ) + ∑ (− 1) ( )(∑ a
k =1
2 r −1
k
r r 2
∑ a 2r ∑ b 2r
∑
r −1
{( ) + (
l =1
r −1
+ (− 1)k
k =1
l 2 r −1
2 r −l
2 r −1
k
( )(∑ a b )
= ∑ a ∑ b + ∑ (− 1) ( )(∑ a
+ (− 1)k
2r
=
k 2 r −1
k
2r −k k
b
)(∑ a b )
k 2r −k
∑ a 2r ∑ b 2r + ∑ (− 1)k ( 2rk−1 )(∑ a 2r −k b k )(∑ a k b 2r −k ) +
r −1
+ (− 1)r
=
∑ ∑
a 2r
m
2 r −1
r
2r
∑ ∑
i; j
r r 2
r −1
k =1
r −1
k
(− 1)
k =0
k 2r
k
2r −k k
b
2 r −1
2r −k
2 r −l l
)}(∑ a
b
)(∑ a b )
l 2 r −l
2r −k k
b
)(∑ a b ) +
k 2r −k
)(∑ a b ) + 12 (− 1) ( )(∑ a b )
k 2r −k
r r 2
k 2r
k
( )(a b ) (a b ) + 12 (− 1) ( )(a b ) (a b )
2r
k
i j
2r −k
k
j i
the permutation of i & j gives:
2
r 2r
k
r
i j
r
j i
=
∑ ∑ ( )(a b ) (− a b ) + ∑ ( )(a b ) (− a b ) +
r −1
i< j
k =0
2r
k
2r
k
i j
1
+
2
2 r −k
2r
k
( )(a b ) (− a b ) + ( )(a b ) (− a b )
i j
r
= ∑ ∑
i < j k =0
r −1
r
( )(a b ) (− a b )
k
j
j i
2r
k
i j
( )(a b ) (− a b ) +
j i
+
2r −k
r
i j
2r −k
i
j i
r
2r
k
j i
2r
k
k =0
j i
∑ (2l r )(ai b j )l (− ai b j )2r −1
l = r +1
2r
= ∑ (ai b j − a j bi )
+
r −1
k
1
2
r
2r
r
i
r
j
j i
i< j
2) if m = 2r
M 2;2 r =
∑
∑
a 2 r +1
+
b 2r +1 +
∑ (− 1)k (2kr )(∑ a 2r −k +1b k )(∑ a k b 2r −k +1 ) +
r
∑ (− 1) ( )(∑ a
2r
k
k = r +1
k =1
2 r −1
k
= ∑ a 2 r +1 ∑ b 2 r +1 + ∑ (− 1)
r
=
∑
a 2 r +1
We remark that
M 2;2 r =
=
r
k =0
2r
k
)(∑ a b
k
2 r − k +1
bk
2 r − k +1
)(∑ a b
k
)
2 r − k +1
)+
r
k = r +1
b 2 r +1 +
( )− (
2r
k
( )(∑ a
bk
∑ (− 1)l +1 (2r2−rl +1 )(∑ a 2r −l +1b l )(∑ a l b 2r −l +1 )
k =1
∑ (− 1)k {( 2kr ) − (2r2−rl +1 )}(∑ a 2r −k +1b k )(∑ a k b 2r −k +1 )
r
k =1
2r
2 r −l +1
∑ (− 1)k
∑∑
i; j
∑
+
k
2 r − k +1
) = 2(r2−r +k )1+ 1 ( ) ; witch gives:
2 r +1
k
2( r − k ) + 1
2r + 1
r
k 2( r − k ) + 1
(− 1)
2r + 1
k =0
( )(∑ a
2 r +1
k
( )(a b )
2 r +1
k
i j
3
2 r − k +1 k
2 r − k +1
b
)(∑ a b
k 2 r − k +1
(a j bi )k
)
The transposition of i& j; gives:
M 2;2r =
∑ ∑
2(r − k ) + 1
2r + 1
i < j k = 0
+
r
∑
2( r − k ) + 1
2r + 1
k =0
r
( )(a b )
2 r +1
k
( )(a b )
2 r +1
k
( )
i j
j i
2 r − k +1
2 r − k +1
(− a j bi )k +
(− ai b j )k
r 2(r − k ) + 1 2 r +1
2 r − k +1
(− a j bi )k +
M 2; 2 r = ∑ ∑
k (a i b j )
2r + 1
i < j k =0
2r
2(r − l ) + 1 2 r +1
2 r −l +1
l
+ ∑−
l (a j bi ) (− ai b j )
2r + 1
l = r +1
2 r +1 2(r − k ) + 1
= ∑ ∑
2r + 1
i < j k =0
( )
( )(a b )
2 r +1
k
2 r − k +1
i
j
let p = a j bi & q = −a i b j , we have:
M 2; 2 r =
∑ ∑
2 r +1 2(r − k ) + 1
i< j
k = 0 2r + 1
( )p
2 r +1
k
(− a b )
k
j i
q
2 r − k +1 k
2 2 r +1 2 r +1 2 r − k +1 k
2 r +1 2(r − k ) + 1 2 r +1 2 r − k +1 k
−
= ∑ ∑
p
q
(
)
∑ k ( k )p q
k
2r + 1
r + 1 k =1
i < j k =0
2(2r + 1) 2 r +1 2 r 2 r − k +1 k
2 r +1
= ∑ ∑ ( 2 rk+1 ) p 2 r − k +1 q k −
∑ k ( k −1 )p q
r + 1 k =1
i < j k =0
2r
2 r +1
= ∑ ( p + q )
− 2∑ k ( 2lr ) p 2 r −l q l +1
i< j
l =1
=
=
∑ {( p + q )2r +1 − 2q( p + q )2r }
∑ {(a j bi − ai b j )2r (a j bi + ai b j )}
i< j
i< j
4
3. Application to polynomials.
Let P( x) =
xi = µ i
p
∏i =1 ( x − µ i ) and Tn = ∑ µ1
n
n
& yi = µ i
i =1
q
we have
n
( µ i is the module of µ i ) : For
∑ (−1) k k Tkp+(m+1−k )qTkq+(m+1−k ) p ≥ 0
m
k =0
m
This inequality is true for all p and q such that kp+(m+1-k)q & kq+(m+1-k)p are
integers.
We have the following relations for m = 1; 2; 3; 4; 5;…
m = 1 → T2 p T2 q − T p2+q ≥ 0
m = 2 → T3 p T3q − 2T2 p + q T p + 2 q ≥ 0
m = 3 → T4 p T4 q − 4T3 p + q T p +3q + 2T22p + 2 q ≥ 0
m = 4 → T5 p T5q + 2T3 p + 2 q T2 p +3q − 3T4 p + q T p + 4q ≥ 0
m = 5 → T6 p T6 q + 15T4 p + 2 q T2 p + 4 q − 6T5 p + q T p +5q − 10T32p +3q ≥ 0
M
References:
[1] Hardy G.H., Littlewood J.E., Polya G., Inequalities. Cambridge Univ.
Press,1952.
[2] Mitrinovitch P.S.,Vasic P.M., Analytic Inequalities. Springer Verlag, 1970.
Author:
Hacene Belbachir - U.S.T.H.B./Faculte de Mathematiques, El Alia, B.P. 32, BabEzzouar, 16111 Algér, Algérie.
5
CAUCHY-BUNIAKOVSKY INEQUALITY
by
Hacene Belbachir
Abstract.The purpose of this Note is to give an extension to the Lagrange identity [1]
and [2], and then an extension to the Cauchy-Bouniakovsky inequality, since the right
hand side is positive. Finally, we give an application to polynomials.
1. Principal result
Let a 1 ,..., a s ; b1 ,..., b s ∈ ; and
where
∑ a k b m+1−k
M 2m =
means
∑ (−1) k k (∑ a m+1−k b k ) (∑ a k b m+1−k )
m
m
k =0
i = s k m +1− k
a b
i =1 i i
∑
∑
Theorem. generalized Lagrange identity
(ai b j − a j bi ) 2 r
i< j
M 2m =
2r
(ai b j − a j bi ) ( ai b j + a j bi )
i< j
∑
for m = 2r − 1
for m = 2r
Corollary. Generalized Cauchy-Buniakovsky inequality
M 2; 2 r −1 ≥ 0 ∀ai ; b j ∈ ℜ (for m = 2r − 1)
Remark. For m = 2r , we deduce the sign of M 2;m
If ai b j ≥ i & j then M 2;m ≥ 0 :
If ai b j ≤ i & j then M 2;m ≤ 0 :
Pour m = 1;2;3;4;... on a:
(∑ a )(∑ b ) − (∑ a b ) → Lagrange Identity :
= (∑ a )(∑ b ) − (∑ a b )(∑ a b )
M 2;1 =
M 2;2
2
2
i
2
i
i i
3
i
3
i
2
i i
1
2
i i
(∑ a
= (∑ a
M 2;3 =
4
i
M 2;4
5
i
M
)(∑ b ) + 3(∑ a b ) − 4(∑ a b )(∑ a b )
)(∑ b ) + 2(∑ a b )(∑ a b ) − 3(∑ a b )(∑ a b )
4
i
2 2 2
i i
5
i
3 2
i i
3
i i
3
i i
2 3
i i
4
i i
4
i i
2. Proof of the theorem
∑ a m+1 ∑ b m+1 − 1 ∑ a m b∑ ab m + L + (− 1)m m ∑ ab m ∑ a m b
We have
M 2;m =
m
1) if m = 2r − 1
M 2; 2 − r =
+ (− 1)r
=
b 2r +
∑ (− 1)k ( 2rk−1 )(∑ a 2r −k b k )(∑ a k b 2r −k ) +
r −1
( )(∑ a b ) + ∑ (− 1) ( )(∑ a
2 r −1
k
r r 2
k =1
2 r −1
k = r +1
( )(∑ a b ) + ∑ (− 1) ( )(∑ a
k =1
2 r −1
k
r r 2
∑ a 2r ∑ b 2r
∑
r −1
{( ) + (
l =1
r −1
+ (− 1)k
k =1
l 2 r −1
2 r −l
2 r −1
k
( )(∑ a b )
= ∑ a ∑ b + ∑ (− 1) ( )(∑ a
+ (− 1)k
2r
=
k 2 r −1
k
2r −k k
b
)(∑ a b )
k 2r −k
∑ a 2r ∑ b 2r + ∑ (− 1)k ( 2rk−1 )(∑ a 2r −k b k )(∑ a k b 2r −k ) +
r −1
+ (− 1)r
=
∑ ∑
a 2r
m
2 r −1
r
2r
∑ ∑
i; j
r r 2
r −1
k =1
r −1
k
(− 1)
k =0
k 2r
k
2r −k k
b
2 r −1
2r −k
2 r −l l
)}(∑ a
b
)(∑ a b )
l 2 r −l
2r −k k
b
)(∑ a b ) +
k 2r −k
)(∑ a b ) + 12 (− 1) ( )(∑ a b )
k 2r −k
r r 2
k 2r
k
( )(a b ) (a b ) + 12 (− 1) ( )(a b ) (a b )
2r
k
i j
2r −k
k
j i
the permutation of i & j gives:
2
r 2r
k
r
i j
r
j i
=
∑ ∑ ( )(a b ) (− a b ) + ∑ ( )(a b ) (− a b ) +
r −1
i< j
k =0
2r
k
2r
k
i j
1
+
2
2 r −k
2r
k
( )(a b ) (− a b ) + ( )(a b ) (− a b )
i j
r
= ∑ ∑
i < j k =0
r −1
r
( )(a b ) (− a b )
k
j
j i
2r
k
i j
( )(a b ) (− a b ) +
j i
+
2r −k
r
i j
2r −k
i
j i
r
2r
k
j i
2r
k
k =0
j i
∑ (2l r )(ai b j )l (− ai b j )2r −1
l = r +1
2r
= ∑ (ai b j − a j bi )
+
r −1
k
1
2
r
2r
r
i
r
j
j i
i< j
2) if m = 2r
M 2;2 r =
∑
∑
a 2 r +1
+
b 2r +1 +
∑ (− 1)k (2kr )(∑ a 2r −k +1b k )(∑ a k b 2r −k +1 ) +
r
∑ (− 1) ( )(∑ a
2r
k
k = r +1
k =1
2 r −1
k
= ∑ a 2 r +1 ∑ b 2 r +1 + ∑ (− 1)
r
=
∑
a 2 r +1
We remark that
M 2;2 r =
=
r
k =0
2r
k
)(∑ a b
k
2 r − k +1
bk
2 r − k +1
)(∑ a b
k
)
2 r − k +1
)+
r
k = r +1
b 2 r +1 +
( )− (
2r
k
( )(∑ a
bk
∑ (− 1)l +1 (2r2−rl +1 )(∑ a 2r −l +1b l )(∑ a l b 2r −l +1 )
k =1
∑ (− 1)k {( 2kr ) − (2r2−rl +1 )}(∑ a 2r −k +1b k )(∑ a k b 2r −k +1 )
r
k =1
2r
2 r −l +1
∑ (− 1)k
∑∑
i; j
∑
+
k
2 r − k +1
) = 2(r2−r +k )1+ 1 ( ) ; witch gives:
2 r +1
k
2( r − k ) + 1
2r + 1
r
k 2( r − k ) + 1
(− 1)
2r + 1
k =0
( )(∑ a
2 r +1
k
( )(a b )
2 r +1
k
i j
3
2 r − k +1 k
2 r − k +1
b
)(∑ a b
k 2 r − k +1
(a j bi )k
)
The transposition of i& j; gives:
M 2;2r =
∑ ∑
2(r − k ) + 1
2r + 1
i < j k = 0
+
r
∑
2( r − k ) + 1
2r + 1
k =0
r
( )(a b )
2 r +1
k
( )(a b )
2 r +1
k
( )
i j
j i
2 r − k +1
2 r − k +1
(− a j bi )k +
(− ai b j )k
r 2(r − k ) + 1 2 r +1
2 r − k +1
(− a j bi )k +
M 2; 2 r = ∑ ∑
k (a i b j )
2r + 1
i < j k =0
2r
2(r − l ) + 1 2 r +1
2 r −l +1
l
+ ∑−
l (a j bi ) (− ai b j )
2r + 1
l = r +1
2 r +1 2(r − k ) + 1
= ∑ ∑
2r + 1
i < j k =0
( )
( )(a b )
2 r +1
k
2 r − k +1
i
j
let p = a j bi & q = −a i b j , we have:
M 2; 2 r =
∑ ∑
2 r +1 2(r − k ) + 1
i< j
k = 0 2r + 1
( )p
2 r +1
k
(− a b )
k
j i
q
2 r − k +1 k
2 2 r +1 2 r +1 2 r − k +1 k
2 r +1 2(r − k ) + 1 2 r +1 2 r − k +1 k
−
= ∑ ∑
p
q
(
)
∑ k ( k )p q
k
2r + 1
r + 1 k =1
i < j k =0
2(2r + 1) 2 r +1 2 r 2 r − k +1 k
2 r +1
= ∑ ∑ ( 2 rk+1 ) p 2 r − k +1 q k −
∑ k ( k −1 )p q
r + 1 k =1
i < j k =0
2r
2 r +1
= ∑ ( p + q )
− 2∑ k ( 2lr ) p 2 r −l q l +1
i< j
l =1
=
=
∑ {( p + q )2r +1 − 2q( p + q )2r }
∑ {(a j bi − ai b j )2r (a j bi + ai b j )}
i< j
i< j
4
3. Application to polynomials.
Let P( x) =
xi = µ i
p
∏i =1 ( x − µ i ) and Tn = ∑ µ1
n
n
& yi = µ i
i =1
q
we have
n
( µ i is the module of µ i ) : For
∑ (−1) k k Tkp+(m+1−k )qTkq+(m+1−k ) p ≥ 0
m
k =0
m
This inequality is true for all p and q such that kp+(m+1-k)q & kq+(m+1-k)p are
integers.
We have the following relations for m = 1; 2; 3; 4; 5;…
m = 1 → T2 p T2 q − T p2+q ≥ 0
m = 2 → T3 p T3q − 2T2 p + q T p + 2 q ≥ 0
m = 3 → T4 p T4 q − 4T3 p + q T p +3q + 2T22p + 2 q ≥ 0
m = 4 → T5 p T5q + 2T3 p + 2 q T2 p +3q − 3T4 p + q T p + 4q ≥ 0
m = 5 → T6 p T6 q + 15T4 p + 2 q T2 p + 4 q − 6T5 p + q T p +5q − 10T32p +3q ≥ 0
M
References:
[1] Hardy G.H., Littlewood J.E., Polya G., Inequalities. Cambridge Univ.
Press,1952.
[2] Mitrinovitch P.S.,Vasic P.M., Analytic Inequalities. Springer Verlag, 1970.
Author:
Hacene Belbachir - U.S.T.H.B./Faculte de Mathematiques, El Alia, B.P. 32, BabEzzouar, 16111 Algér, Algérie.
5