Belbachir1 . 47KB Jun 04 2011 12:08:24 AM

A GENERALIZED LAGRANGE IDENTITY AND
CAUCHY-BUNIAKOVSKY INEQUALITY
by
Hacene Belbachir

Abstract.The purpose of this Note is to give an extension to the Lagrange identity [1]
and [2], and then an extension to the Cauchy-Bouniakovsky inequality, since the right
hand side is positive. Finally, we give an application to polynomials.

1. Principal result
Let a 1 ,..., a s ; b1 ,..., b s ∈ ; and

where

∑ a k b m+1−k

M 2m =

means

∑ (−1) k  k  (∑ a m+1−k b k ) (∑ a k b m+1−k )

m

m

k =0
i = s k m +1− k
a b
i =1 i i





Theorem. generalized Lagrange identity
 (ai b j − a j bi ) 2 r
 i< j
M 2m = 
2r
 (ai b j − a j bi ) ( ai b j + a j bi )
 i< j




for m = 2r − 1
for m = 2r

Corollary. Generalized Cauchy-Buniakovsky inequality
M 2; 2 r −1 ≥ 0 ∀ai ; b j ∈ ℜ (for m = 2r − 1)
Remark. For m = 2r , we deduce the sign of M 2;m

If ai b j ≥ i & j then M 2;m ≥ 0 :

If ai b j ≤ i & j then M 2;m ≤ 0 :
Pour m = 1;2;3;4;... on a:

(∑ a )(∑ b ) − (∑ a b ) → Lagrange Identity :
= (∑ a )(∑ b ) − (∑ a b )(∑ a b )

M 2;1 =


M 2;2

2

2
i

2
i

i i

3
i

3
i

2
i i


1

2
i i

(∑ a
= (∑ a

M 2;3 =

4
i

M 2;4

5
i

M


)(∑ b ) + 3(∑ a b ) − 4(∑ a b )(∑ a b )
)(∑ b ) + 2(∑ a b )(∑ a b ) − 3(∑ a b )(∑ a b )
4
i

2 2 2
i i

5
i

3 2
i i

3
i i

3
i i


2 3
i i

4
i i

4
i i

2. Proof of the theorem

∑ a m+1 ∑ b m+1 −  1 ∑ a m b∑ ab m + L + (− 1)m  m ∑ ab m ∑ a m b

We have

M 2;m =

m


1) if m = 2r − 1

M 2; 2 − r =

+ (− 1)r
=

b 2r +

∑ (− 1)k ( 2rk−1 )(∑ a 2r −k b k )(∑ a k b 2r −k ) +
r −1

( )(∑ a b ) + ∑ (− 1) ( )(∑ a
2 r −1
k

r r 2

k =1
2 r −1


k = r +1

( )(∑ a b ) + ∑ (− 1) ( )(∑ a
k =1

2 r −1
k

r r 2

∑ a 2r ∑ b 2r



r −1

{( ) + (

l =1


 r −1
+  (− 1)k

 k =1

l 2 r −1
2 r −l

2 r −1
k

( )(∑ a b )

= ∑ a ∑ b +  ∑ (− 1) ( )(∑ a


+ (− 1)k
2r


=

k 2 r −1
k

2r −k k

b

)(∑ a b )
k 2r −k

∑ a 2r ∑ b 2r + ∑ (− 1)k ( 2rk−1 )(∑ a 2r −k b k )(∑ a k b 2r −k ) +
r −1

+ (− 1)r
=

∑ ∑
a 2r


m

2 r −1
r

2r

∑ ∑
i; j

r r 2

r −1

k =1

 r −1
k
 (− 1)
 k =0

k 2r
k

2r −k k

b

2 r −1
2r −k

2 r −l l

)}(∑ a

b

)(∑ a b )
l 2 r −l

2r −k k

b

)(∑ a b ) +
k 2r −k

)(∑ a b ) + 12 (− 1) ( )(∑ a b )
k 2r −k

r r 2

k 2r
k



( )(a b ) (a b )  + 12 (− 1) ( )(a b ) (a b ) 
2r
k

i j

2r −k

k

j i

the permutation of i & j gives:

2





r 2r
k

r

i j

r

j i



=


∑ ∑ ( )(a b ) (− a b ) + ∑ ( )(a b ) (− a b )  +

 r −1

i< j 
k =0

2r
k

2r
k

i j

1
+
2

2 r −k

2r
k

( )(a b ) (− a b ) + ( )(a b ) (− a b )  
i j

r


= ∑  ∑
i < j  k =0
r −1

r

( )(a b ) (− a b )

k

j

j i



2r

k

i j

( )(a b ) (− a b )  +
j i

+

2r −k



r

i j

2r −k

i

j i

r

2r
k

j i

2r
k

k =0

j i


∑ (2l r )(ai b j )l (− ai b j )2r −1 
l = r +1

2r
= ∑ (ai b j − a j bi )
+

r −1

k

1
2

r

2r
r

i

r

j

j i



i< j

2) if m = 2r
M 2;2 r =





a 2 r +1

+

b 2r +1 +

∑ (− 1)k (2kr )(∑ a 2r −k +1b k )(∑ a k b 2r −k +1 ) +
r

∑ (− 1) ( )(∑ a
2r

k

k = r +1

k =1

2 r −1
k

= ∑ a 2 r +1 ∑ b 2 r +1 + ∑ (− 1)
r

=



a 2 r +1

We remark that
M 2;2 r =
=

r

k =0

2r
k

)(∑ a b
k

2 r − k +1

bk

2 r − k +1

)(∑ a b
k

)

2 r − k +1

)+

r

k = r +1

b 2 r +1 +

( )− (
2r
k

( )(∑ a

bk

∑ (− 1)l +1 (2r2−rl +1 )(∑ a 2r −l +1b l )(∑ a l b 2r −l +1 )
k =1

∑ (− 1)k {( 2kr ) − (2r2−rl +1 )}(∑ a 2r −k +1b k )(∑ a k b 2r −k +1 )
r

k =1

2r
2 r −l +1

∑ (− 1)k

∑∑
i; j



+

k

2 r − k +1

) = 2(r2−r +k )1+ 1 ( ) ; witch gives:
2 r +1
k

2( r − k ) + 1
2r + 1

 r
k 2( r − k ) + 1
 (− 1)
2r + 1
k =0

( )(∑ a
2 r +1
k

( )(a b )
2 r +1
k

i j

3

2 r − k +1 k

2 r − k +1

b

)(∑ a b

k 2 r − k +1

(a j bi )k 



)

The transposition of i& j; gives:
M 2;2r =

∑ ∑


2(r − k ) + 1
2r + 1
i < j k = 0
+

r



2( r − k ) + 1
2r + 1
k =0
r

( )(a b )
2 r +1
k

( )(a b )
2 r +1
k

( )

i j

j i

2 r − k +1

2 r − k +1

(− a j bi )k +

(− ai b j )k 


 r 2(r − k ) + 1 2 r +1
2 r − k +1
(− a j bi )k +
M 2; 2 r = ∑ ∑
k (a i b j )
2r + 1
i < j  k =0
2r
 2(r − l ) + 1  2 r +1
2 r −l +1 
l
+ ∑−
 l (a j bi ) (− ai b j )

2r + 1 
l = r +1

2 r +1 2(r − k ) + 1
= ∑ ∑
2r + 1
i < j  k =0

( )

( )(a b )
2 r +1
k

2 r − k +1

i

j

let p = a j bi & q = −a i b j , we have:
M 2; 2 r =

∑ ∑

2 r +1 2(r − k ) + 1

i< j 
 k = 0 2r + 1

( )p
2 r +1
k

(− a b ) 
k

j i


q 


2 r − k +1 k



2 2 r +1 2 r +1 2 r − k +1 k 
2 r +1 2(r − k ) + 1 2 r +1 2 r − k +1 k

= ∑ ∑
p
q
(
)
∑ k ( k )p q 
k
2r + 1
r + 1 k =1
i < j  k =0
2(2r + 1) 2 r +1 2 r 2 r − k +1 k 
2 r +1
= ∑  ∑ ( 2 rk+1 ) p 2 r − k +1 q k −
∑ k ( k −1 )p q 
r + 1 k =1
i < j  k =0

2r


2 r +1
= ∑ ( p + q )
− 2∑ k ( 2lr ) p 2 r −l q l +1 
i< j 
l =1


=

=

∑ {( p + q )2r +1 − 2q( p + q )2r }

∑ {(a j bi − ai b j )2r (a j bi + ai b j )}
i< j

i< j

4

3. Application to polynomials.

Let P( x) =

xi = µ i

p

∏i =1 ( x − µ i ) and Tn = ∑ µ1
n

n

& yi = µ i

i =1

q

we have

n

( µ i is the module of µ i ) : For

∑ (−1) k  k Tkp+(m+1−k )qTkq+(m+1−k ) p ≥ 0
m

k =0

m

This inequality is true for all p and q such that kp+(m+1-k)q & kq+(m+1-k)p are
integers.
We have the following relations for m = 1; 2; 3; 4; 5;…
m = 1 → T2 p T2 q − T p2+q ≥ 0

m = 2 → T3 p T3q − 2T2 p + q T p + 2 q ≥ 0

m = 3 → T4 p T4 q − 4T3 p + q T p +3q + 2T22p + 2 q ≥ 0

m = 4 → T5 p T5q + 2T3 p + 2 q T2 p +3q − 3T4 p + q T p + 4q ≥ 0

m = 5 → T6 p T6 q + 15T4 p + 2 q T2 p + 4 q − 6T5 p + q T p +5q − 10T32p +3q ≥ 0

M

References:

[1] Hardy G.H., Littlewood J.E., Polya G., Inequalities. Cambridge Univ.
Press,1952.
[2] Mitrinovitch P.S.,Vasic P.M., Analytic Inequalities. Springer Verlag, 1970.

Author:
Hacene Belbachir - U.S.T.H.B./Faculte de Mathematiques, El Alia, B.P. 32, BabEzzouar, 16111 Algér, Algérie.

5

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52