Aricol_ICTAMI_IU. 189KB Jun 04 2011 12:08:21 AM

ACTA UNIVERSITATIS APULENSIS

No 15/2008

EQUILIBRIUM STABILITY OF A SERVO ACTUATING
FLIGHT CONTROLS IN A SERVOELASTIC FRAMEWORK

Ioan Ursu, Felicia Ursu, Andrei Halanay, Carmen Anca Safta
Abstract. The mounting structure stiffness’s effects on mecanohydraulic servomechanisms actuating aicraft’s primary flight controls are modeled as a system of ordinary differential equations. Stability analysis of equilibria reveals the presence of a critical case that is handled through the use of
the Lyapunov-Malkin theorem. Stability charts are drawn using the RouthHurwitz criterion for stability polynomial and it is shown that the stability
of the system can be ensured exploiting positive influence of structural feedback.
2000 Mathematics Subject Classification: 34H05, 34D20.
1. Introduction
Due to complex aeroservoelastic interaction between rigid body dynamics,
structural dynamics, unsteady aerodynamics and hydraulic servos, a real
problem of control design improvement permanently exists in the field [1], of
airframe control. To address it, a control synthesis for an mechanohydraulic
servoactuator (MHS) in a particular servoelastic framework defined by its
finite mounting structure stiffness is developed in the present paper. The
premise of the approach starts from a simple conjecture: as an aeroservoelastic system’s component, asymptotically stable in the presence of exogeneous
inputs, the hydraulic servoactuator will thus contribute to general stability

and performance of flight control system. From this perspective, and extending recent results of the authors ([2] - [4]), the present work offers a model of
treatment of the aeroservoelastic problems even in an early stage of system
design.

179

I. Ursu, F. Ursu, A. Halanay, C. A. Safta - Equilibrium Stability ...
2.The mathematical model
In Figure 1, a typical physical model of an MHS in the servoelastic framework is shown, defined by considering the mounting structure stiffness E.
MHS is in fact a combination spool valve (SV)-hydrocylinder (HC) with piston. The first equation of the SV-controlled piston is obtained based on the
fact that the flow into and out of the cylinder is described by two components, one being due to the movement of the piston and one to compressibility
effects: for the case σ > 0

Figure 1: Physical model of a typical MHS: a) spool valve, cylinder with
piston, feedback linkage, load, mounting structure; b) ideal ”two-land-fourway” spool valve
s

2(ps − p1 )
V + S(z − ze )
= S(z˙ − z˙e ) +

p˙1 ,
ρ
B
r
2p2
V − S(z − ze )
= −S(z˙ − z˙e ) +
p˙2
−cd wσ
ρ
B
cd wσ

180

(2.1)

I. Ursu, F. Ursu, A. Halanay, C. A. Safta - Equilibrium Stability ...
and similarly, if σ < 0
r

V + S(z − ze )
2
p1 = S(z˙ − z˙e ) +
p˙1 ,
cd wσ
ρ
B
s
2(ps − p2 )
V − S(z − ze )
−cd wσ
= −S(z˙ − z˙e ) +
p˙2 .
ρ
B

(2.1′ )

The parameters are: cd - volumetric flow coefficient of the valve port; w
- valve-port width; ps - supply pressure; ρ - volumetric density of oil; V cylinder semivolume; B - bulk modulus of the oil. The variables are: p1 and

p2 - hydraulic pressures in the chambers of the HC; σ - relative displacement
spool-sleeve; z - load displacement; ze - mounting structure displacement.
The equation of motion of the piston assembly is a force balance equation

z + f z˙ + kz = S(p1 − p2 )

(2.2)

The dynamics of the feedback deflection ze is given by an equation involving the stiffness E, an equivalent mass me and a damping coefficient
ae
me z¨e + ae z˙e + Eze = −S(p1 − p2 ).
(2.3)
An algebraic equation, the feedback linkage equation, completes the differential algebraic mathematical model. It is the equation of the valve opening
σ viewed as a linear superposition of three small succesive displacements
of input displacement x, output feedback response variable z and feedback
deflection ze induced by structural feedback
σ = λ1 x − λ2 z + λ3 ze
λ1 =

b(c + d)

,
c(a + b)

λ2 =

a(c + d)
,
c(a + b)

(2.4)
λ3 =

c+d
.
c

The following limitation is to be considered
|x| < xM .
3. Stability of equilibria


181

(2.5)

I. Ursu, F. Ursu, A. Halanay, C. A. Safta - Equilibrium Stability ...
To equations (2.1)-(2.4) corresponds a six-dimensional system of ordinary
differential equations that describes the evolution of the servomechanism for
σ > 0. Let
r
2
(3.1)
C = cd w
ρ
and introduce the following state variables
x1 = z, x2 = z,
˙ x3 = ze , x4 = z˙e , x5 = p1 , x6 = p2

(3.2)

(2.1)-(2.4) give

x˙ 1 = x2
x˙ 2 = −

k
f
S
x1 − x2 + (x5 − x6 )
m
m
m

x˙ 3 = x4

ae
S
E
x3 −
x4 −
(x5 − x6 )
me

me  me


BS
C
x˙ 5 =
(λ1 x − λ2 x1 + λ3 x3 ) ps − x5 − x2 + x4
V + S(x1 − x3 )  S


C
−BS
(λ1 x − λ2 x1 + λ3 x3 ) x6 − x2 + x4
x˙ 6 =
V − S(x1 − x3 ) S
x˙ 4 = −

(3.3)

Equilibria (ˆ

x1 , xˆ2 , xˆ3 , xˆ4 , xˆ5 , xˆ6 ) satisfy xˆ2 = 0, xˆ4 = 0 and

x1 − S(ˆ
x5 − xˆ6 ) = 0
E xˆ3 + S(ˆ
x5 − xˆ6 ) = 0
λ1 x − λ2 xˆ1 + λ3 xˆ3 = 0

(3.4)

So
xˆ1 =

Eλ1 x
k
k Eλ1 x
, xˆ3 = − xˆ1 , xˆ2 = xˆ4 = 0, xˆ5 = xˆ6 +
(3.5)
Eλ2 + kλ3
E

S Eλ2 + kλ3

where xˆ5 , xˆ6 ∈ (0, ps ).
Translate such an equilibrium point (ˆ
x1 , 0, xˆ3 , 0, xˆ5 , xˆ6 ) given by (3.5) to
origin through
y1 = x1 −ˆ
x1 , y2 = x2 , y3 = x3 −ˆ
x3 , y4 = x4 , y5 = x5 −ˆ
x5 , y6 = x6 −ˆ
x6 (3.6)
and introduce also
xˆ0 = xˆ1 − xˆ3
182

(3.7)

I. Ursu, F. Ursu, A. Halanay, C. A. Safta - Equilibrium Stability ...
The new system will be
y˙ 1 = y2 := f1 (y1 , . . . , y6 )

k
f
S
y1 − y2 + (y5 − y6 ) := f2 (y1 , . . . , y6 )
m
m
m
y˙ 3 = y4 := f3 (y1 , . . . , y6 )
y˙ 2 = −

ae
S
E
y3 −
y4 −
(y5 − y6 ) := f4 (y1 , . . . , y6 )
me
me
me
BS
y˙ 5 =
×
V + S(y1 − y3 + xˆ0 )


p
C
− (λ2 y1 − λ3 y3 ) ps − y5 − xˆ5 − y2 + y4 := f5 (y1 , . . . , y6 )
S
BS
×
y˙ 6 =
V − S(y1 − y3 + xˆ0 )


p
C
(λ2 y2 − λ3 y3 ) p6 + xˆ6 + y2 − y4 := f6 (y1 , . . . , y6 )
S
y˙ 4 = −

(3.8)

To investigate Lyapunov stability of the zero solution in (3.8) the starting
point is the computation of the Jacobian matrix in 0, A = [aij ]. Observe
that

∂f5
BCλ2 ps − xˆ5
BS
a51 =
(0) = −
; a52 = −
;
∂y1
V + Sx0
V + Sx0
(3.9)

BCλ3 ps − xˆ5
, a54 = −a52 , a55 = a56 = 0
a53 =
V + Sx0
and


BCλ2 xˆ6
BS
BCλ3 xˆ6
a61 =
; a62 =
; a63 = −
;
(3.10)
V − Sx0
V − Sx0
V − Sx0
a64 = −a62 ; a65 = a66 = 0

183

I. Ursu, F. Ursu, A. Halanay, C. A. Safta - Equilibrium Stability ...
It follows that


0
1
k
f


m
m
0
0






A=
 0


 a51
a61

0
a52
a62

0

0

0

0

0
1
ae
E


me
me
a53
a54
a63
a64

The characteristic polynomial of A is


0
0
S
S 
− 
m
m 
0
0 

S
S 


me me 

0
0 
0
0

P (λ) = λP1 (λ)

(3.11)

(3.12)

The approach in [5] leads to the following result on stability. Its proof is
presented in [6].
Theorem 3.1. If P1 in (3.12) is a stable polynomial, equilibria given in
(3.5) are Lyapunov stable. When initial conditions are close enough to the
equilibrium point the asymptotic behaviour of the solutions is given by
lim x1 (t) = xˆ1 , lim x2 (t) = 0, lim x3 (t) = xˆ3 , lim x4 (t) = 0,

t→∞

t→∞

lim x5 (t) = xˆ5 +

t→∞

t→∞

t→∞

α
α
, lim x6 (t) = xˆ6 +
.
1 + d5 t→∞
1 + d5

(see [6] for the definitions of d5 and α).
4. Numerical results
Consider the following values of the system’s parameters: m = 30 kg equivalent inertia load of primary control surface reduced at the hydraulic
servo’s piston rod; me = 2 kg - equivalent inertia of hydraulic servo body
and attached neighbour structure; k = 105 N/m - equivalent aeromounting
structure elastic force coefficient; f = 3 × 103 N s/m - equivalent viscous
friction force coefficient; ps = 2 × 107 N/m2 - supply pressure to valve; pR ≈ 0
- return pressure; S = 10−3 m2 - piston area; xM = 0.03m - half of piston
stroke [m]; V = 3 × 10−5 m3 - semivolume of oil under compression in both
cylinder chambers [m3 ], V := S × xM ; B = 6 × 108 N/m2 - bulk modulus of
oil; w = 8.5 × 10−4 m - area gradient of valve [m2 /m], or valve port width;
184

I. Ursu, F. Ursu, A. Halanay, C. A. Safta - Equilibrium Stability ...
2
2
4
, λ2 = , λ 3 =
- kinetic
3
3
3
3
feedback coefficients; ρ = 850kg/m - oil density; kQp = flow-pressure gain
[m5 /N s]; kQ = valve flow gain [m2 /s].
Usual values of structural damping ae are given in the literature
√ ([3], [7],
[8]) as corresponding to 2% of critical damping ratio so ae = 0, 04 Eme .
Introduce p ∈ (0, 1) by
xˆ6 = pps
(4.1)

cd = 0.6 - valve discharge coefficient; λ1 =

By the Routh-Hurwitz criterion ([9]) a necessary and sufficient condition that
the polynomial
5
X
P1 (λ) = λ5 +
aj (p, x)λ5−j
j=1

in (3.12) be stable is that the principal minors of the Hurwitz matrix be
positive. Thus we must verify:
f
∆1 = a1 > 0 and this is indeed the case since a1 =
m
∆2 (p, x) = a1 a2 (p, x) − a3 (p, x) > 0

(4.2)

∆3 (p, x) = a1 a2 (p, x)a3 (p, x) + a1 a5 (p, x) − a3 (p, x)2 − a21 a4 (p, x) > 0 (4.3)
∆4 (p, x) = a4 (p, x)∆3 (p, x) − a5 (p, x)[a1 a2 (p, x)2 + a5 (p, x)−
−a1 a4 (p, x) − a3 (p, x)a2 (p, x)] > 0
a5 (p, x) > 0

(4.4)
(4.5)

(note that ∆5 = a4 /∆4 ).
The relations (4.2)-(4.5) give the stability charts. Some of them are presented in Figures 2, 3, 4, 5.
5. Concluding remarks
The conclusion of this paper, based on a thorough analysis of the Lyapunov stability of equilibria in a six-dimensional nonlinear model of a hydraulic servomechanism, is that the elasticity of mounting structure induces
a stabilizing structural feedback in the closed-loop system.
The absence of such quantitative evaluations lead to excessive charge of
hydraulic servos with controllers to artificially improve system’s stability in
various approaches based on automatic control theory.
185

I. Ursu, F. Ursu, A. Halanay, C. A. Safta - Equilibrium Stability ...

Figure 2: Full parameter space (p, x) stability of the system with nominal
mass m = 30kg (E = 55 × 108 N/m, λ3 = 0.1)

Figure 3: Instability domain for increased mass, m = 60kg (E = 55 ×
108 N/m, λ3 = 0.1)

186

I. Ursu, F. Ursu, A. Halanay, C. A. Safta - Equilibrium Stability ...

Figure 4: Benefit of increased structural feedback, λ3 = 4/3 (the same parameters as in Fig. 3, stability domain is easily increased)

Figure 5: Effect of increasing mounting structure elasticity - E decreased,
E = 55 × 106 N/m versus Fig. 3 (the same parameters, m = 60Kg, λ3 = 0.1)

187

I. Ursu, F. Ursu, A. Halanay, C. A. Safta - Equilibrium Stability ...
The analysis performed in the paper took into account two quantities E
(the larger is E the lower is the elasticity of the mounting structure) and λ3 ,
essential for describing servoelastic properties and it was possible to evidence
their contribution to stability of equilibria in Figures 2-5.
The model in the present paper is closer to reality than the one in [10]
and has also the advantage to take into study internal, natural resources for
stabilizing equilibria through adequate design of E and λ3 .
References
[1] R. Taylor, R. W. Pratt and B. D. Caldwell, Effect of actuator nonlinearities on aeroservoelasticity, Journal of Guidance, Control, and Dynamics,
19(2), (1996), pp. 309-315.
[2] A. Halanay, C. A. Safta, Stabilization of some nonlinear controlled
electrohydraulic servosystems, Applied Mathematics Letters, 18(8), (2005),
pp. 911-915.
[3] I. Ursu, M. Vladimirescu, F. Ursu, About aeroservoelasticity criteria
for electrohydraulic servomechanisms synthesis, Proceedings of 20th Congress
of the International Council of the Aeronautical Sciences, ICAS 96, Sorento,
Italy, September 8-13, 2, (1996), pp. 2335-2344.
[4] I. Ursu, F. Ursu, Some absolute stability restrictions in output feedback
synthesis of electrohydraulic servos, Proceedings of the International Conference on Recent Advances in Aerospace Actuation Systems and Components,
Toulouse, France, November 24-26, (2004), pp. 173-182.
[5] I. G. Malkin, Theory of Stability of Motion, Moscow, Nauka, (in Russian), (English transl. Atomic Energy Comm, Translation, AEC-TR-3352),
(1966), pp. 530.
[6] A. Halanay, C. A. Safta, F. Ursu, I. Ursu, Paper in preparation for
publication.
[7] F. Kubica, T. Livet, Design of flight control system for an aeroelastic aircraft, Proceedings of the 3rd IEEE Control Applications Conference,
Glasgow, (1994), pp. 335-340.
[8] Y. Ribakov, J. Gluck, A. M. Reinhorn, Active viscous damping system for control of MOOF structure, Earthquake engineering and structural
mounting structures, 30, (2001), pp. 195-212.
[9] L. Brand, Differential and Difference Equations, New York, Academic
Press, pp. 697, 1966.
188

I. Ursu, F. Ursu, A. Halanay, C. A. Safta - Equilibrium Stability ...
Authors:
Ioan Ursu
”Elie Carafoli” National Institute for Aerospace Research
Blvd. Iuliu Maniu 220, Bucharest 061126, ROMANIA
email:iursu@aero.incas.ro
Felicia Ursu
”Elie Carafoli” National Institute for Aerospace Research
Blvd. Iuliu Maniu 220, Bucharest 061126, ROMANIA
email:fursu@aero.incas.ro
Andrei Halanay
Department of Mathematics 1, University Politehnica of Bucharest
Splaiul Independent¸ei 313, Bucharest, 060042, ROMANIA
email:halanay@mathem.pub.ro
Carmen Anca Safta
Department of Hydraulic and Hydraulic Machinery, University Politehnica
of Bucharest
Splaiul Independent¸ei 313, Bucharest, 060042, ROMANIA
email:saphta@hydrop.pub.ro

189

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52