sigma06-001. 230KB Jun 04 2011 12:09:47 AM

Symmetry, Integrability and Geometry: Methods and Applications

Vol. 2 (2006), Paper 001, 11 pages

Lax Integrable Supersymmetric Hierarchies
on Extended Phase Spaces
Oksana Ye. HENTOSH
Institute for Applied Problems of Mechanics and Mathematics,
National Academy of Sciences of Ukraine, 3B Naukova Str., Lviv, 79060 Ukraine
E-mail: dept25@iapmm.lviv.ua
Received October 27, 2005, in final form December 21, 2005; Published online January 04, 2006
Original article is available at http://www.emis.de/journals/SIGMA/2006/Paper001/
Abstract. We obtain via B¨acklund transformation the Hamiltonian representation for
a Lax type nonlinear dynamical system hierarchy on a dual space to the Lie algebra of
super-integral-differential operators of one anticommuting variable, extended by evolutions
of the corresponding spectral problem eigenfunctions and adjoint eigenfunctions, as well as
for the hierarchies of their additional symmetries. The relation of these hierarchies with
the integrable by Lax (2|1 + 1)-dimensional supersymmetric Davey–Stewartson system is
investigated.
Key words: Lax type flows; “ghost” symmetries; the Davey–Stewartson system
2000 Mathematics Subject Classification: 35Q53; 35Q58; 37K10; 37K30; 37K35; 58A50


1

Introduction

Since the paper of M. Adler [1] there was an understanding that Lax forms for a wide class
of integrable nonlinear dynamical system hierarchies on functional manifolds [2, 3, 4, 5] and
their supersymmetric analogs [6, 7] could be considered as Hamiltonian flows on dual spaces to
the Lie algebra of integro-differential operators. Those flows are generated by the R-deformed
canonical Lie–Poisson bracket and Casimir functionals as Hamiltonian functions (see [1, 8, 9]).
For a concrete integro-differential operator every Hamiltonian flow of such a type can be written
as a compatibility condition for the corresponding isospectral problem in the case of an arbitrary
eigenfunction and the suitable evolution of this function. Thus, the existence problem of a
Hamiltonian representation for the Lax type hierarchy, extended by the evolutions of a finite
set of eigenfunctions and appropriate adjoint eigenfunctions, arises. In [10, 11, 12] it was solved
for the Lie algebra of integro-differential operators by use of the Casimir functionals’ invariant
property under some Lie–B¨acklund transformation. Analogously we obtain in this paper the
Hamiltonian representation of the extended Lax type system hierarchy for the Lie algebra of
super-integro-differential operators of one anticommuting variable.
The hierarchies of additional or “ghost” symmetries [13] for the extended Lax type system are

also proved to be Hamiltonian. It is established that every additional symmetry hierarchy is generated by the tensor product of the R-deformed canonical Lie–Poisson bracket with the Poisson
bracket on a finite-dimensional superspace, possessing an odd supersymplectic structure [14, 15],
and all natural powers of one eigenvalue from the mentioned above finite set as Hamiltonian
functions. The additional symmetry hierarchy is used for introducing one more commuting variable into (1|1 + 1)-dimensional supersymmetric nonlinear dynamical systems with preserving
their integrability by Lax. By means of this approach a (2|1 + 1)-dimensional supersymmetric
analog of the Davey–Stewartson system [5, 16, 17] and its triple linearization of a Lax type are
found.

2

2

O.Ye. Hentosh

The general algebraic scheme

Let G be a Lie algebra of scalar super-integral-differential operators [6] of one anticommuting
variable θ (θ2 = 0):
X
a := ∂ m +

aj Dθj ,
m ∈ N,
j0

where aj and bl are smooth superfunctions, forms Lie subalgebras in G and G = G+ ⊕ G− .
Because of the splitting of G into the direct sum (2) of its Lie subalgebras one can construct
a Lie–Poisson structure [1, 8, 9] on G ∗ , using the special linear endomorphism R of G:
R := (P+ − P− )/2,

P± G := G± ,

P± G∓ = 0.

For any smooth by Frechet functionals γ, µ ∈ D(G ∗ ) the Lie–Poisson bracket on G ∗ is given by
the expression:
{γ, µ}R (l) = (l, [∇γ(l), ∇µ(l)]R ) ,

(3)

Lax Integrable Supersymmetric Hierarchies on Extended Phase Spaces


3

where l ∈ G ∗ and for all a, b ∈ G the R-deformed commutator has the form:
[a, b]R := [Ra, b] + [a, Rb].

(4)

The linear space G with the commutator (4) also becomes a Lie algebra. The gradient ∇γ(l) ∈ G
of some functional γ ∈ D(G ∗ ) at the point l ∈ G ∗ with respect to the scalar product (1) is defined
as
δγ(l) := (∇γ(l), δl) ,
where the linear space isomorphism G ≃ G ∗ is taken into account.
Every Casimir functional γ ∈ I(G∗ ), being invariant with respect to Ad∗ -action of the corresponding Lie group G, obeys the following condition at the point l ∈ G ∗ :
[l, ∇γ(l)] = 0.

(5)

The relationship (5) is satisfied by the hierarchy of functionals γn ∈ I(G∗ ), n ∈ Z+ , taking the
forms:

1
γn (l) =
(l1/m , ln/m ).
(6)
n+1
The Lie–Poisson bracket (3) generates the hierarchy of Hamiltonian dynamical systems on G ∗ :
dl/dtn := [R∇γn (l), l] = [(∇γn (l))+ , l],

(7)

with the Casimir functionals (6) as Hamiltonian functions.
The latter equation is equivalent to the usual commutator Lax type representation. It is easy
to verify that for every n ∈ Z+ the relationship (7) is a compatibility condition for such linear
integral-differential equations:
lf = λf,

(8)

df /dtn = (∇γn (l))+ f,


(9)

and
where λ ∈ C is a spectral parameter, f ∈ W 1|0 := L∞ (S1 ×Λ1 ; C1|0 ) if f is an even superfunction
and f ∈ W 0|1 := L∞ (S1 ×Λ1 ; C0|1 ) if f is an odd one. Here Λ := Λ0 ⊕Λ1 is a Grassmann algebra
over C, Λ0 ⊃ R. The associated with (9) dynamical system for the adjoint superfunction f ∗
takes the form:
df ∗ /dtn = −(∇γn (l))∗+ f ∗ ,

(10)

where (f, f ∗ )T ∈ W 1|1 := L∞ (S1 ×Λ1 ; C1|1 ) or (f ∗ , f )T ∈ W 1|1 and superfunction f ∗ is a solution
of the adjoint spectral problem:
l∗ f ∗ = λf ∗ .
The objects of further investigations are some algebraic properties of equation (7) together with
2N ∈ N copies of equation (9):
dfi /dtn = (∇γn (l))+ fi ,
dΦi /dtn = (∇γn (l))+ Φi ,

(11)


for even fi ∈ W 1|0 and odd Φi ∈ W 0|1 eigenfunctions of the spectral problem (8), corresponding
to the eigenvalues λi , i = 1, N , and the same number of copies of equation (10):
dfi∗ /dtn = −(∇γn (l))∗+ fi∗ ,
dΦ∗i /dtn = −(∇γn (l))∗+ Φ∗i ,

(12)

for corresponding odd fi∗ ∈ W 0|1 and even Φ∗i ∈ W 1|0 adjoint eigenfunctions, as a coupled
evolution system on the space G ∗ ⊕ W 2N |2N .

4

3

O.Ye. Hentosh

Tensor product of Poisson structures
and its B¨
acklund transformation


To compactify the description below one shall use the following designation of the left gradient
vector:
!T
δγ
δγ
δγ
δγ
δγ
˜ ∗i , f˜i∗ , Φ
˜ i ) :=
,
,
,
,
,
∇γ(˜l, f˜i , Φ
˜ ∗ δ f˜∗ δ Φ
˜i
δ ˜l δ f˜i δ Φ

i
i
˜ ∗ , f˜∗ , Φ
˜ i )T ∈ G ∗ ⊕ W 2N |2N for any smooth functional γ ∈
where i = 1, N , at a point (˜l, f˜i , Φ
i
i
D(G ∗ ⊕ W 2N |2N ).
On the spaces G ∗ and W N ⊕ W ∗N there exist a Lie–Poisson structure [1, 8, 9]
    

˜
δγ
δγ
Θ
δγ/δ ˜l :→ ˜l,
− ˜l,
,
(13)
δ ˜l +

δ ˜l +
˜ : G → G ∗ , at a point ˜l ∈ G ∗ and the canonical Poisson structure [14, 15]
where Θ
!T
!T
δγ
δγ δγ δγ δγ
δγ δγ δγ

,
,
, − ∗,
,
:→ − ∗ ,
,
,
˜ ∗ δ f˜∗ δ Φ
˜i
˜ i δ f˜i
˜

δΦ
δ f˜i δ Φ
δ f˜i δ Φ
i
i
i

(14)

N
P
(f˜i ∧ f˜i∗ −
J˜ : T ∗ (W 2N |2N ) → T (W 2N |2N ), corresponding to the odd symplectic form ω (2) =
i=1

˜ i ∧Φ
˜ ∗ ), at a point (f˜i , Φ
˜ ∗ , f˜∗ , Φ)
˜ T ∈ W 2N |2N . It should be noted that the Poisson structure (13)
Φ
i
i
i
generates equation (7) for any Casimir functional γ ∈ I(G ∗ ).
Thus, on the extended phase space G ∗ ⊕ W 2N |2N one can obtain a Poisson structure as the
˜ ⊗ J˜ of (13) and (14).
tensor product L˜ := Θ
Consider the following B¨
acklund transformation:
B
˜ ∗ , f˜∗ , Φ
˜ i )T :7→
˜ ∗ , f˜∗ , Φ
˜ i ), fi = f˜i , Φ∗ = Φ
˜ ∗ , f ∗ = f˜∗ , Φi = Φ
˜ i )T ,
(˜l, f˜i , Φ
(l(˜l, f˜i , Φ
i
i
i
i
i
i
i
i

(15)

generating on G ∗ ⊕ W 2N |2N a Poisson structure L with respect to variables (l, fi , Φ∗i , fi∗ , Φi ),
i = 1, N , of the coupled evolution equations (7), (11) and (12). The main condition for the
mapping (15) is coincidence of the dynamical system
(dl/dt, dfi /dt, dΦ∗i /dt, dfi∗ /dt, dΦi /dt)T := −L∇γn (l, fi , Φ∗i , fi∗ , Φi )

(16)

with equations (7), (11) and (12) in the case of γn ∈ I(G ∗ ), n ∈ Z+ , i.e. when the functional γn
is taken to be not dependent of variables (fi , Φ∗i , fi∗ , Φi )T ∈ W 2N |2N . To satisfy that condition,
one should find a variation of some Casimir functional γn ∈ I(G ∗ ), n ∈ Z+ , at δ ˜l = 0, taking
acklund transformation (15):
into account the evolutions (11), (12) and the B¨

˜ ∗i , f˜i∗ , Φ
˜ i )
δγn (˜l, f˜i , Φ
δ˜
l=0
!
N
X
δγ
δγ
δγ
δγ
n
n
n
n
˜ i,
˜ ∗i ,
=
hδ f˜i ,
i
i + hδ f˜i∗ , ∗ i + hδ Φ
i + hδ Φ
˜∗
˜i
˜i
˜
δ
Φ
δΦ
δ
f
δ
f
i
i
i=1
!
N
X
˜∗
˜i
˜∗
d
f
d
Φ
d
Φ


i
i
˜ i, −
˜ ,
=
hδ f˜i , −
i + hδ Φ
i + hδ f˜i , df˜i /dtn i + hδ Φ
i
i
dtn
dtn
dtn
i=1
N 
X
=
hδfi , (∇γn (l))∗+ fi∗ i + hδΦ∗i , (∇γn (l))+ Φi i + hδfi∗ , (∇γn (l))+ fi i
i=1

Lax Integrable Supersymmetric Hierarchies on Extended Phase Spaces
+



hδΦi , (∇γn (l))∗+ Φ∗i i

=

N 
X

5

h(∇γn (l))+ δfi , fi∗ i + h(∇γn (l))+ fi , δfi∗ i

i=1


+ h(∇γn (l))+ (δΦi ), Φ∗i i + h(∇γn (l))+ Φi , δΦ∗i i
=

N 
X

(∇γn (l), δ(fi Dθ−1 fi∗ ))

+



(∇γn (l), δ(Φi Dθ−1 Φ∗i ))

i=1

=



∇γn (l), δ

N
X

(fi Dθ−1 fi∗

+



Φi Dθ−1 Φ∗i )

i=1

:= (∇γn (l), δl),

(17)

where γn ∈ I(G ∗ ), n ∈ Z+ , at the point l ∈ G ∗ and the brackets h·, ·i designate paring of the
spaces W 1|0 and W 0|1 . As a result of the expression (17) one obtains the relationships:

δl|δ˜l=0 = δ

N
X

(fi Dθ−1 fi∗ + Φi Dθ−1 Φ∗i ).

i=1

Having assumed the linear dependence of l from ˜l ∈ G ∗ one gets right away that
l = ˜l +

N
X

(fi Dθ−1 fi∗ + Φi Dθ−1 Φ∗i ).

(18)

i=1

Thus, the B¨acklund transformation (15) can be written as
B
˜ i )T →
˜ ∗i , f˜i∗ , Φ
7
(˜l, f˜i , Φ



l = ˜l +

N
X

(fi Dθ−1 fi∗

+

Φi Dθ−1 Φ∗i ), fi , Φ∗i , fi∗ , Φi

i=1

T

.

(19)

The expression (19) generalizes the result obtained in the papers [10, 11, 12] for the Lie algebra
of integral-differential operators. The existence of the B¨
acklund transformation (19) makes it
possible to formulate the following theorem.
Theorem 1. The dynamical system on G ∗ ⊕ W 2N |2N , being Hamiltonian with respect to the
Poisson structure L˜ : T ∗ (G ∗ ⊕ W 2N |2N ) → T (G ∗ ⊕ W 2N |2N ), in the form of the following
evolution equations:

 


δγn ˜
δγn
d˜l
˜
,l −
,l ,
=
dtn
δ ˜l +
δ ˜l
+

˜
˜
df˜i∗
dfi
δγn
δγn
δγn
d Φi
,
= ∗,
=−
=−
,
˜
˜
dtn
dtn
dtn
δ Φi
δ fi
δ f˜i

˜i
δγn

,
=
˜∗
dtn
δΦ
i

where i = 1, N and γn ∈ I(G ∗ ), n ∈ Z+ , is a Casimir functional at the point l ∈ G ∗ , conacklund
nected with ˜l ∈ G ∗ by (18), is equivalent to the system (9), (13) and (14) via the B¨
transformation (19).
By means of simple calculations via the formula:

˜ ′∗,
L = B LB

6

O.Ye. Hentosh


where B : T (G ∗ ⊕ W 2N |2N ) → T (G ∗ ⊕ W 2N |2N ) is a Frechet derivative of (19), one brings about
the following form of the Poisson structure L on G ∗ ⊕ W 2N |2N ∋ (l, fi , Φ∗i , fi∗ , Φi )T :
     

N 
X
δγ
δγ
δγ
˜
˜
− l,
+
fi Dθ−1

 l,

δfi
δ ˜l +
δ ˜l + i=1



 − δγ D−1 f ∗ + Φi D−1 δγ − δγ D−1 Φ∗

θ δΦ
δfi∗ θ i
δΦ∗i θ i
i




δγ
δγ

− ∗−
fi

L
δfi  δl +
∇γ(l, fi , Φ∗i , fi∗ , Φi ) → 

δγ ∗ ∗
δγ

+
Φ


δΦi  δl + i


δγ
δγ ∗ ∗

+
fi

δfi∗

δl +

δγ
δγ
− ∗−
Φi
δΦi
δl +













,











(20)

where γ ∈ D(G ∗ ⊕ W 2N |2N ) is an arbitrary smooth functional and i = 1, N , that makes it
possible to formulate the theorem.
Theorem 2. For every n ∈ Z+ the coupled dynamical system (7), (11) and (12) is Hamiltonian
with respect to the Poisson structure L in the form (20) and the functional γn ∈ I(G ∗ ).
Using the expression (18) one can construct the hierarchy of Hamiltonian evolution equations, describing commutative flows, generated by involutive with respect to the Lie–Poisson
bracket (3) Casimir invariants γn ∈ I(G ∗ ), n ∈ Z+ , on the extended space G ∗ ⊕ W 2N |2N at
a fixed element ˜l ∈ G ∗ . For every n ∈ Z+ the equation of such a type is equivalent to the system
(7), (11) and (12).

4

Hierarchies of additional symmetries

The evolution type hierarchy (7), (11) and (12) possesses another set of invariants, which includes
all natural powers of the eigenvalues λi , i = 1, N . They can be considered as smooth by Frechet
functionals on the extended space G ∗ ⊕ W 2N |2N due to the representation:
λsk = hls fk , fk∗ i + hls Φk , Φ∗k i,

(21)

where s ∈ N, taking place for all k = 1, N under the normalizing condition:
hfk , fk∗ i + hΦk , Φ∗k i = 1.
In the case of
l := l+ +

N
X

(fi Dθ−1 fi∗ + Φi Dθ−1 Φ∗i )

(22)

i=1

the formula (21) leads to the following variation of the functionals λsk ∈ D(G ∗ ⊕ W 2N |2N ),
k = 1, N :
δλsk = h(δls )fk , fk∗ i + h(δls )Φk , Φ∗k i
+ hls (δfk ), fk∗ i + hls fk , δfk∗ i + hls (δΦk ), Φ∗k i + hls Φk , δΦ∗k i

Lax Integrable Supersymmetric Hierarchies on Extended Phase Spaces
= (δl+ , Mks ) +
+

N
X

7

hδfi , (−Mks + δki ls )∗ fi∗ i + hδfi∗ , (−Mkn + δki ls )fi i

i=1
hδΦi , (−Mks + δki ls )∗ Φ∗i i


+ hδΦ∗i , (−Mkn + δki ls )Φi i ,

where δki is a Kronecker symbol and the operator Mks , s ∈ N, is determined as
Mks :=

s−1
X
p=0


1
(lp fk )Dθ−1 (l∗s−1−p fk∗ ) + (lp Φk )Dθ−1 (l∗s−1−p Φ∗k ) = λs−1
k Mk .

Thus, one obtains the exact forms of gradients for the functionals λsk ∈ D(Gˆ∗ ⊕ W 2N |2N ),
k = 1, N :


Mks
 (−M s + δ i ls )∗ fi∗ 
k
k


s
∗ ∗
n
i s

∇λk (l+ , fi , Φi , fi , Φi ) = 
(23)
 (−Mk + δk l )Φi  ,
 (−M n + δ i ls )fi 
k
k
(−Mks + δki ls )∗ Φ∗i

where i = 1, N . By means of the expression (23) the tensor product L˜ of Poisson structures (13)
and (14) generates the hierarchy of coupled evolution equations on G ∗ ⊕ W 2N |2N :
dl+ /dτs,k = −[Mks , ˆl+ ]+ ,
dfi /dτs,k =

(−Mks

dΦi /dτs,k =

(24)

+ δki ls )fi ,
(−Mks + δki ls )Φi ,

dfi∗ /dτs,k = (Mks − δki ls )∗ fi∗ ,
dΦ∗i /dτs,k = (Mks − δki ls )∗ Φ∗i ,

(25)
(26)

where i = 1, N , for every k = 1, N . Because of the B¨
acklund transformation (19) the equation (24) is equivalent to the commutator relationship:
dl/dτs,k = −[Mks , l] = −λks−1 [Mk1 , l] = λs−1
k dl/dτ1,k ,

(27)

and the following theorem takes place:
Theorem 3. For every k = 1, N and s ∈ N the coupled dynamical system (24), (25) and (26)
is Hamiltonian one with respect to the Poisson structure L in the form (20) and the functional
λnk ∈ D(G ∗ ⊕ W 2N |2N ).
The coupled dynamical systems (24), (25) and (26) represent flows on G ∗ ⊕ W 2N |2N , commuting one with each other.
Theorem 4. For k = 1, N the coupled evolution equations (24), (25) and (26) form a set of
additional symmetry hierarchies for the coupled dynamical system (7), (11) and (12).
Proof . To prove the theorem it is sufficient to show that
[d/dtn , d/dτ1,k ] = 0,

[d/dτ1,k , d/dτ1,q ] = 0,

(28)

where k, q = 1, N and n ∈ N. The first equality in the formula (28) follows from the identities:
d(∇γn (l))+ /dτ1,k = [(∇γn (l))+ , M11 ]+ ,

dM11 /dtn = [(∇γn (ˆl))+ , M11 ]− ,

the second one being a consequence of the relationship:
dMk1 /dτ1,q − dMq1 /dτ1,k = [Mk1 , Mq1 ].



8

O.Ye. Hentosh
When N ≥ 2, a new class of nontrivial Hamiltonian flows d/dTn,K := d/dtn +

K
P

d/dτn,k ,

k=1

n ∈ N, K = 1, N − 1, in a Lax form on G ∗ ⊕ W 2N |2N can be constructed by use of the set
of additional symmetry hierarchies for the Lie algebra of super-integro-differential operators.
Acting on the functions fi , fi∗ , Φi , Φ∗i , i = 1, N , these flows generate ((1 + K)|1+1)-dimensional
supersymmetric nonlinear dynamical systems.
For the first time the additional symmetries in the case of N = 2 were applied by E. Nissimov
and S. Pacheva [13] to obtain a Lax integrable supersymmetric analog of the (2 + 1)-dimensional
Davey–Stewartson system. If
l := ∂ + f1 Dθ−1 f1∗ + f2 Dθ−1 f2∗ + Φ1 Dθ−1 Φ∗1 + Φ2 Dθ−1 Φ∗2 ∈ G ∗ ,
where (f1 , f2 , Φ∗1 , Φ∗2 , f1∗ , f2∗ , Φ1 , Φ2 )T ∈ W 4|4 , the flows ∂/∂τ := d/dτ1,1 and d/dT := d/dT2,1 =
d/dt2 + d/dτ2,1 on G ∗ ⊕ W 4|4 , acting on the functions fi , fi∗ , Φi , Φ∗i , i = 1, 2, by the following
way:
f1,τ = f1,x + u1 f2 − α1 Φ2 ,

f2,τ = −¯
u1 f1 + α
¯ 2 Φ1 ,


f1,τ


f2,τ
= −u1 f1∗ − α2 Φ∗1 ,

=


f1,x

+

u
¯1 f2∗



α
¯ 1 Φ∗2 ,

Φ1,τ = Φ1,x − α2 f2 + u2 Φ2 ,

Φ2,τ = −¯
α1 f1 − u
¯ 2 Φ1 ,

Φ∗1,τ

Φ∗2,τ = α1 f1∗ − u2 Φ∗1 ,

=

Φ∗1,x



α
¯ 2 f2∗



u
¯2 Φ∗2 ,

(29)

and
f1,T = f1,xx + f1,τ τ + w1 Dθ f1 + w0 f1 + 2v1,τ f1 − 2βτ Φ1 ,
f2,T = f2,xx + w1 Dθ f2 + w0 f2 − u
¯1 f1,τ + α
¯ 2 Φ1,τ + u
¯1,τ f1 − α
¯ 2,τ Φ1,τ ,







¯
f = −f
−f
− Dθ (w1 f ) − w0 f − 2v1,τ f + 2βτ Φ ,
1,T

1,xx

1,τ τ

1

1

1

1




f2,T
= −f2,xx
− Dθ (w1 f2∗ ) − w0 f2∗ + u1 f1,τ
+ α2 Φ∗1,τ − u1,τ f1∗ + α2,τ Φ∗1,τ ,
Φ1,T = Φ1,xx + Φ1,τ τ + w1 Dθ Φ1 + w0 Φ1 + 2f1 β¯τ + 2v2,τ Φ1 ,

Φ2,T = Φ2,xx + w1 Dθ Φ2 + w0 Φ2 − α
¯ 1 f1,τ − u
¯2 Φ1,τ + α
¯ 1,τ f1 + u
¯2,τ Φ1,τ ,
Φ∗1,T = −Φ∗1,xx − Φ1,τ τ − Dθ (w1 Φ∗1 ) − w0 Φ∗1 − 2f1∗ βτ − 2v2,τ Φ∗1 ,

Φ∗2,T = −Φ∗2,xx − Dθ (w1 Φ∗2 ) − w0 Φ∗2 − α1 f1,τ
+ u2 Φ∗1,τ + α1,τ f1∗ − u2,τ Φ∗1,τ ,

Dθ u1 = f1 f2∗ ,

Dθ u2 = Φ1 Φ∗2 ,

Dθ u
¯1 = f1∗ f2 ,

Dθ u
¯2 = Φ∗1 Φ2 ,

Dθ v1 = f1 f1∗ ,

Dθ v2 = Φ1 Φ∗1 ,

Dθ α1 = f1 Φ∗2 ,

Dθ α2 = Φ1 f2∗ ,
Dθ β¯ = f ∗ Φ1 ,

Dθ α
¯ 1 = f1∗ Φ2 ,

Dθ α
¯ 2 = Φ∗1 f2 ,

Dθ β = f1 Φ∗1 ,

1

(30)

where (∇γ2 (l))+ := ∂ 2 + w1 Dθ + w0 , represent (2|1 + 1)-dimensional supersymmetric nonlinear
dynamical system. The system (29) and (4) possesses an infinite sequence of local conservation
laws, which can be found by the formula (6), and a Lax representation, given by the spectral
problem (8) and the evolution equations:
fτ = −M11 f,
fT = ((∇γ2 (l))+ −

(31)
M12 )f,

(32)

for an arbitrary eigenfunction f ∈ W 1|0 or f ∈ W 0|1 . The relationships and (32) lead to
additional nonlinear constraints such as
w0,τ = 2w1 (f1 f1∗ − Φ1 Φ∗1 ) + 2(f1 (Dθ f1∗ ) + Φ1 (Dθ Φ∗1 ))x ,
w1,τ = −2(f1 f1∗ )x + 2(Φ1 Φ∗1 )x .

(33)

Lax Integrable Supersymmetric Hierarchies on Extended Phase Spaces

9

When f1 := ψ, f1∗ := θψ ∗ , f2 = f2∗ = 0 and Φ1 = Φ∗1 = Φ2 = Φ∗2 = 0, the equations and are
reduced to the Lax integrable (2 + 1)-dimensional Davey–Stewartson system [5, 16, 17]:
ψ1,T = ψ1,xx + ψ1,τ τ + 2(S − 2ψψ ∗ )ψ,





− ψ1,τ
ψ1,T
= −ψ1,xx
τ − 2(S − 2ψψ )ψ ,

Sxτ = (∂/∂x + ∂/∂τ )2 ψψ ∗ ,
0 + 4ψψ ∗ , w := w 0 , v
0

1
where 2S := w00 + 2v1,τ
0
1,τ := v1,τ and ψ, ψ ∈ L∞ (S ; C).
0
The Lax representation (10), (4) and (32) for the (2|1 + 1)-dimensional supersymmetric
nonlinear dynamical Davey–Stewartson system (29), (4) and (4) has equivalent matrix form:






Dθ F = 








dF
=





0
0
0
0
0
f1∗
0
0
0
0
f2∗
0
0
0
0
Φ∗1
0
0
0
0
Φ∗2
0
0
0
0
λ −f1 −f2 −Φ1 −Φ2

1
0
0
0
0
0






 F,





0
−f1
0
−Φ1
0
0
Dθ f1∗
−λ
u
¯1
0
α
¯ 1 −f1∗ 

0
−u1
0
α2
0
0 
 F,
0
α
¯2
−λ
u
¯2 Φ∗1 
Dθ Φ∗1

0
−α1
0
−u2
0
0 
Φ1 Φ∗1 − f1 f1∗ −Dθ f1 0 −Dθ Φ1 0
0

dF
= CF,
dT

where F = (F 0 := f, F 2 , F 4 , F 1 , F 3 , F 5 )τ ∈ W 3|3 , C := (Cmn ) ∈ gl(3|3), m, n = 1, 6, and
1
C11 = λ2 + w0 + f1 Dθ f1∗ + Φ1 Dθ Φ∗1 ,
2
C13 = −(λf2 + f2,x ) + u
¯1 f1 − α
¯ 2 Φ1 ,
C15
C21

C12 = −(2λf1 + f1,x + f1,τ ),

C14 = −(2λΦ1 + Φ1,x + Φ1,τ ),
1
= −(λΦ2 + Φ2,x ) − u
¯ 2 Φ1 + α
¯ 1 f1 ,
C16 = w1 − f1 f1∗ + Φ1 Φ∗1 ,
2




= −w1 f1 + 2Dθ (−f1,x + λf1 ) − u
¯1 Dθ f2 − α
¯ 1 Dθ Φ∗2 ,

C22 = −λ2 − 2Dθ (f1 f1∗ ) − u1 u
¯1 + α1 α
¯1,
¯1 α2 − u2 α
¯1,
C24 = −2Dθ (Φ1 f1∗ ) + u

C23 = −Dθ (f2 f1∗ ) + λ¯
u1 − u
¯1,τ ,
α1 − α
¯ 1,τ ,
C25 = −Dθ (Φ2 f1∗ ) + λ¯


C26 = 2(−λf1∗ + f1,x
)+u
¯1 f2∗ − α
¯ 1 Φ∗2 ,
1

C31 = − w1 f2∗ + Dθ (−f2,x
+ λf2∗ ) + u1 Dθ f1∗ + α2 Dθ Φ∗1 ,
2
C32 = −Dθ (f1 f2∗ ) − λu1 − u1,τ ,
C33 = −Dθ (f2 f2∗ ) + u1 u
¯1 − α2 α
¯2,

C34 = −Dθ (Φ1 f2∗ ) + λα2 + α2,τ ,

C35 = −Dθ (Φ2 f2∗ ) + u1 α
¯1 − u
¯2 α2 ,


C36 = (−λf2∗ + f2,x
) − u1 f1∗ + α2 Φ∗1 ,

C41 = −w1 Φ∗1 + 2Dθ (−Φ∗1,x + λΦ∗1 ) + u
¯2 Dθ Φ∗2 − α
¯ 2 Dθ f2∗ ,
C42 = −2Dθ (f1 Φ∗1 ) − u1 α
¯2 − u
¯2 α1 ,

C43 = −Dθ (f2 Φ∗1 ) + λ¯
α2 − α
¯ 2,τ ,

¯2 − α2 α
¯2,
C44 = −λ2 − 2Dθ (Φ1 Φ∗1 ) − u2 u

u2 − u
¯2,τ ,
C45 = −Dθ (Φ2 Φ∗1 ) + λ¯

¯ 2 f2∗ ,
¯2 Φ∗2 + α
C46 = 2(−λΦ∗1 + Φ∗1,x ) + u
1
C51 = − w1 Φ∗2 + Dθ (−Φ∗2,x + λΦ∗2 ) + α1 Dθ f1∗ + u2 Dθ Φ∗1 ,
2

10

O.Ye. Hentosh
C52 = −Dθ (f1 Φ∗2 ) − λα1 − α1,τ ,

C53 = −Dθ (f2 Φ∗2 ) + α1 u
¯1 − α
¯ 2 u2 ,

C54 = −Dθ (Φ1 Φ∗2 ) − λu2 − u2,τ ,

C55 = −Dθ (Φ2 Φ∗2 ) + α1 α
¯ 1 + u2 u
¯2 ,

C56 = (−λΦ∗2 + Φ∗2,x ) − α1 f1∗ + u2 Φ∗1 ,
1
C61 = Dθ w0 + (Dθ f1 )Dθ f1∗ + (Dθ Φ1 )Dθ Φ∗1
2
− (f1,τ f1∗ + f2,x f2∗ − Φ1,τ Φ∗1 − Φ2,x Φ∗2 ) + u
¯1 f1 f2∗ − α
¯ 1 f1 Φ∗2 + α
¯ 2 Φ1 f2∗ + u
¯2 Φ1 Φ∗2 ,
1
C62 = −Dθ (2λf1 + f1,x + f1,τ ) + w1 f1 + f1 (−f1 f1∗ + Φ1 Φ∗1 ),
2
1
¯1 (Dθ f1 ) + α
¯ 2 (Dθ Φ1 )
C63 = −Dθ (λf2 + f2,x ) + w1 f2 + u
2
1
C64 = −Dθ (2λΦ1 + Φ1,x + Φ1,τ ) + w1 Φ1 − f1 f1∗ Φ1 ,
2
1
¯2 Dθ Φ1 − α
¯ 1 Dθ f1 ,
C65 = −Dθ (λΦ2 + Φ2,x ) + w1 Φ2 − u
2
1
1
C66 = λ2 + w0 + Dθ w1 − (Dθ f1 )f1∗ + (Dθ Φ1 )Φ∗1 .
2
2
In fact, one has found a triple matrix linearization for a (2|1 + 1)-dimensional dynamical system,
that is important for the standard method of inverse scattering transformation [3] as well as
for the reduction procedure [18, 19] upon invariant subspaces of associated spectral problem
eigenvalues.
The method of additional symmetries is effective for constructing a wide class of (2|1 + 1)dimensional supersymmetric nonlinear dynamical systems with a triple matrix linearization.

5

Conclusion

By now several regular Lie-algebraic approaches existed to constructing Lax integrable (2 + 1)dimensional nonlinear dynamical systems on functional manifolds, which were presented in [12,
20, 21, 22]. In this paper a new Lie-algebraic method is devised for introducing one more
commuting variable into (1|1 + 1)-dimensional dynamical systems with preserving their integrability by Lax. It involves use of additional symmetries [13] for a Hamiltonian flow hierarchy on
extended dual space to some operator Lie algebra.
Any integrable (2|1+1)-dimensional supersymmetric nonlinear dynamical system obtained by
means of the method possesses an infinite sequence of local conservation laws and a triple matrix linearization of a Lax type. These properties make it possible to apply the standard inverse
scattering transformation [3] and the reduction procedure [18, 19] upon invariant subspaces.
If N > 2 in the representation (22), the hierarchies of additional symmetries can be used
for constructing Lax integrable ((1 + K)|1 + 1)-dimensional supersymmetric systems, where
K = 1, N − 1.
Analyzing the structure of the B¨
acklund type transformation (19) as a key point of the
method, one can observe that it strongly depends on an ad-invariant scalar product chosen
for an operator Lie algebra G and a Lie algebra decomposition like (2). Since there are other
possibilities of choosing ad-invariant scalar products on G and such decompositions, they give
rise naturally to other B¨acklund transformations.

Acknowledgements
The author thanks Professor A.K. Prykarpatsky for useful discussions and Organizers of Sixth
International Conference “Symmetry in Nonlinear Mathematical Physics” (2005, Kyiv) for invitation to take part in the conference. The present paper is the written version of the talk
delivered by the author at this conference.

Lax Integrable Supersymmetric Hierarchies on Extended Phase Spaces

11

[1] Adler M., On a trace functional for formal pseudo-differential operators and the symplectic structures of
a Korteweg–de Vries equation, Invent. Math., 1979, V.50, N 2, 219–248.
[2] Lax P.D., Periodic solutions of the KdV equation, Comm. Pure Appl. Math., 1975, V.28, 141–188.
[3] Novikov S.P. (Editor), Soliton theory: method of the inverse problem, Moscow, Nauka, 1980 (in Russian).
[4] Prykarpatsky A.K., Mykytiuk I.V., Algebraic integrability of nonlinear dynamical systems on manifolds:
classical and quantum aspects, Dordrecht–Boston–London, Kluwer Academic Publishers, 1998.
[5] Blaszak M., Multi-Hamiltonian theory of dynamical systems, Verlag–Berlin–Heidelberg, Springer, 1998.
[6] Manin Yu.I., Radul A.O., A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy, Comm.
Math. Phys., 1985, V.98, 65–77.
[7] Oevel W., Popowicz Z., The bi-Hamiltonian structure of fully supersymmetri Korteweg–de Vries systems,
Comm. Math. Phys., 1991, V.139, 441–460.
[8] Semenov-Tian-Shansky M.A., What is the R-matrix, Funct. Anal. Appl., 1983, V.17, N 4, 17–33 (in Russian).
[9] Oevel W., R-structures, Yang–Baxter equations and related involution theorems, J. Math. Phys., 1989,
V.30, N 5, 1140–1149.
[10] Oevel W., Strampp W., Constrained KP hierarchy and bi-Hamiltonian structures, Comm. Math. Phys.,
1993, V.157, 51–81.
[11] Prykarpatsky Ya.A., Structure of integrable Lax flows on nonlocal manifolds: dynamical systems with
sources, Math. Methods and Phys.-Mech. Fields, 1997, V.40, N 4, 106–115 (in Ukrainian).
[12] Prykarpatsky A.K., Hentosh O.Ye., The Lie-algebraic structure of (2 + 1)-dimensional Lax type integrable
nonlinear dynamical systems, Ukrainian Math. J., 2004, V.56, N 7, 939–946.
[13] Nissimov E., Pacheva S., Symmetries of supersymmetric integrable hierarchies of KP type, J. Math. Phys.,
2002, V.43, N 5, 2547–2586; nlin.SI/0102010.
[14] Berezin F.A., Introduction to algebra and analysis with anticommuting variables, Moscow Univ., 1983 (in
Russian).
[15] Shander V.N., Analogues of the Frobenius and Darboux theorems, Reports of Bulgarian Academy of Sciences,
1983, V.36, N 3, 309–311.
[16] Ablowitz M.J., Segur H., Solitons and the inverse scattering transform, Philadelphia, SIAM, 1981.
[17] Kulish P.P., Lipovsky V.D., On Hamiltonian interpretation of the inverse problem method for the Davey–
Stewartson equation, LOMI Proceedings, Leningrad, Nauka, 1987, V.161, 54–71 (in Russian).
[18] Prykarpatsky A.K., Hentosh O.E., Blackmore D.L., The finite-dimensional Moser type reductions of modified
Boussinesq and super-Korteweg–de Vries Hamiltonian systems via the gradient-holonomic algorithm and the
dual moment maps. I, J. Nonlinear Math. Phys., 1997, V.4, N 3–4, 455–469.
[19] Prykarpatsky A.K., Blackmore D., Strampp W., Sydorenko Yu., Samuliak R., Some remarks on Lagrangian
and Hamiltonian formalism, related to infinite-dimensional dynamical systems with symmetries, Condensed
Matter Phys., 1995, N 6, 79–104.
[20] Sato M., Soliton equations as dynamical systems on infinite Grassmann manifolds, RIMS Kokyuroku, Kyoto
Univ., 1981, V.439, 30–40.
[21] Reiman A.G., Semenov-Tian-Shansky M.A., The Hamiltonian structure of Kadomtsev–Petviashvili type
equations, LOMI Proceedings, Leningrad, Nauka, 1987, V.164, 212–227 (in Russian).
[22] Prykarpatsky A.K., Samoilenko V.Hr., Andrushkiw R.I., Mitropolsky Yu.O., Prytula M.M., Algebraic structure of the gradient-holonomic algorithm for Lax integrable nonlinear systems. I, J. Math. Phys., 1994, V.35,
N 4, 1763–1777.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52