vol18_pp117-125. 106KB Jun 04 2011 12:06:02 AM

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 117-125, February 2009

ELA

http://math.technion.ac.il/iic/ela

SOME RESULTS ON GROUP INVERSES OF BLOCK MATRICES
OVER SKEW FIELDS∗
CHANGJIANG BU† , JIEMEI ZHAO† , AND KUIZE ZHANG†

Abstract. In this paper, necessary and
sufficient conditions are given for the existence of

A A over any skew field, where A, B are both square and
the group inverse of the block matrix B
0
rank(B) ≥ rank(A). The representation of this group inverse and some relative additive results are
also given.


Key words. Skew, Block matrix, Group inverse.

AMS subject classifications. 15A09.

1. Introduction. Let K be a skew field and K n×n be the set of all matrices
over K. For A ∈ K n×n , the matrix X ∈ K n×n is said to be the group inverse of A, if
AXA = A, XAX = X, AX = XA.


We then write X = A . It is well known that if A♯ exists, it is unique; see [16].
Research on representations of the group inverse of block matrices is an important
effort in generalized inverse theory of matrices; see [14] and [13]. Indeed, generalized
inverses are useful tools in areas such as special matrix theory, singular differential
and difference equations and graph theory; see [5], [9] [11], [12] and [15]. For example,
in [9] it is shown that the adjacency matrix of a bipartite graph can be written in the


0 B
, and necessary and sufficient conditions are given for the existence
form of

C 0


0 B
.
and representation of the group inverse of a block matrix
C 0
In 1979, Campbell and Meyer proposed the problem of finding
 repre an explicit
A B
in terms
sentation for the Drazin (group) inverse of a 2 × 2 block matrix
C D
of its sub-blocks, where A and D are required to be square matrices; see [5]. In [10] a


A B
is given under the ascondition for the existence of the group inverse of
C D
∗ Received by the editors October 11, 2008. Accepted for publication February 20, 2009. Handling

Editor: Ravindra B. Bapat.
† Department of Applied Mathematics, College of Science, Harbin Engineering University, Harbin
150001, P. R. China (buchangjiang@hrbeu.edu.cn, zhaojiemei500@163.com, zkz0017@163.com).
Supported by the Natural Science Foundation of Heilongjiang Province, No.159110120002.

117

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 117-125, February 2009

ELA

http://math.technion.ac.il/iic/ela

118

Changjiang Bu, Jiemei Zhao, and Kuize Zhang

sumption that A and (I +CA−2 B) are both invertible over any field; however, the representation of thegroup inverse

 is not given. The representation of the group inverse
A B
over skew fields has been given in 2001; see [6]. The repof a block matrix
0 C


A B
(A
resentation of the Drazin (group) inverse of a block matrix of the form
C 0
is square, 0 is square null matrix) has not been given since it was proposed as a problem by Campbell in 1983; see [4]. However, there are some references in the literature


A B
about representations of the Drazin (group) inverse of the block matrices
C 0
under certain conditions. Some results are on matrices over the field of complex numbers, e.g., in [8]; or when A = B = In in [7]; or when A, B, C ∈ {P, P ∗ , P P ∗ }, P 2 = P
and P ∗ is the conjugate transpose of P . Some results are over skew fields, e.g., in [1],
when A = In and rank(CB)2 = rank(B) = rank(C); in [3] when A = B, A2 = A. In
addition, in [2] results are given on the group inverse of the product of two matrices

over a skew field, as well as some related properties.
In this paper, we mainly give necessary and sufficient conditions for the 
exisA A
or
tence and the representation of the group inverse of a block matrix
B 0


A B
, where A, B ∈ K n×n , rank(B) ≥ rank(A). We also give a sufficient
A 0
condition for AB to be similar to BA.
Letting A ∈ K m×n , the order of the maximum invertible sub-block of A is said
to be the rank of A, denoted by rank(A); see [17]. Let A, B ∈ K n×n . If there is an
invertible matrix P ∈ K n×n such that B = P AP −1 , then A and B are similar; see
[17].
2. Some Lemmas.
Lemma 2.1. Let A, B ∈ K n×n . If rank(A) = r, rank(B) = rank(AB) =
rank(BA), then there are invertible matrices P, Q ∈ K n×n such that
A=P




Ir
0

0
0



Q, B = Q

−1



B1
Y B1


B1 X
Y B1 X



P −1 ,

where B1 ∈ K r×r , X ∈ K r×(n−r), and Y ∈ K (n−r)×r .
Proof. Since rank(A) = r, there are nonsingular matrices P, Q ∈ K n×n such that
A=P



Ir
0

0
0




Q, B = Q−1



B1
B3

B2
B4



P −1 ,

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 117-125, February 2009

ELA


http://math.technion.ac.il/iic/ela

Group Inverses of Block Matrices over Skew Fields

119

where B1 ∈ K r×r , B2 ∈ K r×(n−r) , B3 ∈ K (n−r)×r , and B4 ∈ K (n−r)×(n−r). From
rank(B) = rank(AB), we have
B3 = Y B1 , B4 = Y B2 , Y ∈ K (n−r)×r .
Since rank(B) = rank(BA), we obtain
B2 = B1 X, B4 = B3 X, X ∈ K r×(n−r) .
So
B = Q−1



B1
Y B1


B1 X
Y B1 X



P −1 .


A 0
∈ K n×n .
B 0
Then the group inverse
of M exists if and only if the group inverse of A exists and

A
. If the group inverse of M exists, then
rank(A) = rank
B
Lemma 2.2. [6] Let A ∈ K r×r , B ∈ K (n−r)×r , M =




M =



A♯
B(A♯ )2

0
0





.


A B
∈ K n×n .
Lemma 2.3. [6] Let A ∈ K
, B ∈ K
, M =
0 0
Then the group inverse of M exists if and only if the group inverse of A exists and


rank(A) = rank A B . If the group inverse of M exists, then
r×r

M♯ =



r×(n−r)

A♯
0

(A♯ )2 B
0





.

Lemma 2.4. [2] Let A ∈ K m×n , B ∈ K n×m . If rank(A) = rank(BA), rank(B)
= rank(AB), then the group inverse of AB and BA exist.
Lemma 2.5. Let A, B ∈ K n×n . If rank(A) = rank(B) = rank(AB) =
rank(BA), then the following conclusions hold:
(i)
(ii)
(iii)
(iv)
(v)

AB(AB)♯ A = A,
A(BA)♯ BA = A,
BA(BA)♯ B = B,
B(AB)♯ A = BA(BA)♯ ,
A(BA)♯ = (AB)♯ A.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 117-125, February 2009

ELA

http://math.technion.ac.il/iic/ela

120

Changjiang Bu, Jiemei Zhao, and Kuize Zhang

Proof. Suppose rank(A) = r. By Lemma 2.1, we have


A=P

Ir
0

0
0



Q, B = Q

−1



B1
Y B1

B1 X
Y B1 X



P −1 ,

where B1 ∈ K r×r , X ∈ K r×(n−r) , Y ∈ K (n−r)×r . Then
AB = P



B1
0

B1 X
0



P −1 , BA = Q−1



B1
Y B1

0
0



Q.

Since rank(A) = rank(B), we have that B1 is invertible. By using Lemma 2.2 and
Lemma 2.3, we get
(AB)♯ = P



B1 −1
0

B1 −1 X
0



P −1 , (BA)♯ = Q−1



B1 −1
Y B1 −1

0
0



Q.

Then

(ii)
(iii)
(iv)
(v)




Ir 0
Q = A,
0 0


Ir 0
Q = A,
A(BA)♯ BA = P
0 0


B1
B1 X

−1
P −1 = B,
BA(BA) B = Q
Y B1 Y B1 X


Ir 0

−1
B(AB) A = Q
Q = BA(BA)♯ ,
Y 0


B1 −1 0

Q = (AB)♯ A.
A(BA) = P
0
0

(i) AB(AB)♯ A = P

3. Conclusions.
Theorem 3.1. Let M =



A
B

A
0


, where A, B ∈ K n×n , rank(B) ≥ rank(A)

= r. Then
(i) The group inverse of M exists if and only if rank(A) = rank(B) = rank(AB) =
rank(BA).


M11 M12
, where
(ii) If the group inverse of M exists, then M ♯ =
M21 M22
M11 = (AB)♯ A − (AB)♯ A2 (BA)♯ B,
M12 = (AB)♯ A,
M21 = (BA)♯ B − B(AB)♯ A2 (BA)♯ + B(AB)♯ A(AB)♯ A2 (BA)♯ B,
M22 = −B(AB)♯ A2 (BA)♯ .

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 117-125, February 2009

ELA

http://math.technion.ac.il/iic/ela

121

Group Inverses of Block Matrices over Skew Fields

Proof. (i) It is obvious that the condition is sufficient. Now we show that the
condition is necessary.
rank(M ) = rank

2



A
B

rank(M ) = rank

A
0





= rank

A2 + AB
BA



0
B

A2
BA



A
0



= rank(A) + rank(B),

= rank



AB
0

A2
BA



.

Since the group inverse of M exists if and only if rank(M ) = rank(M 2 ), we have
rank(A) + rank(B) = rank(M 2 )
≤ rank(AB) + rank



A2
BA



≤ rank(AB) + rank(A),
rank(A) + rank(B) = rank(M 2 )

≤ rank AB

A2



+ rank(BA)

≤ rank(BA) + rank(A).

Then rank(B) ≤ rank(AB), and rank(B) ≤ rank(BA). Therefore
rank(B) = rank(AB) = rank(BA).
From rank(B) = rank(AB) ≤ rank(A), and rank(A) ≤ rank(B), we have
rank(A) = rank(B).



Since rank(A)+rank(B) ≤ rank AB A2 +rank(BA), and rank AB


rank(A), we get rank AB A2 = rank(A). Thus
rank



AB

A2



= rank(AB).

Then there exists a matrix U ∈ K n×n such that ABU = A2 . Then


AB
0
= rank(AB) + rank(BA).
rank(M 2 ) = rank
0
BA
So we get
rank(A) = rank(B) = rank(AB) = rank(BA).

A2





Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 117-125, February 2009

ELA

http://math.technion.ac.il/iic/ela

122

Changjiang Bu, Jiemei Zhao, and Kuize Zhang




M11 M12
. We will prove that the matrix X satisfies the
M21 M22
conditions of the group inverse. Firstly, we compute
(ii) Let X =

MX =



AM11 + AM21
BM11

XM =



AM12 + AM22
BM12

M11 A + M12 B
M21 A + M22 B

M11 A
M21 A





,

.

Applying Lemma 2.5 (i), (ii), and (v), we have
AM11 + AM21 = A(AB)♯ A − A(AB)♯ A2 (BA)♯ B + A(BA)♯ B − AB(AB)♯ A2 (BA)♯
+ AB(AB)♯ A(AB)♯ A2 (BA)♯ B
= A(BA)♯ B,
M11 A + M12 B = (AB)♯ A2 − (AB)♯ A2 (BA)♯ BA + (AB)♯ AB
= (AB)♯ A2 − (AB)♯ A2 + (AB)♯ AB
= A(BA)♯ B.
Using Lemma 2.5 (i), (ii), and (v), we get
AM12 + AM22 = A(AB)♯ A − AB(AB)♯ A2 (BA)♯
= A(AB)♯ A − A2 (BA)♯
= 0,
M11 A = (AB)♯ A2 − (AB)♯ A2 (BA)♯ BA
= (AB)♯ A2 − (AB)♯ A2
= 0.
From Lemma 2.5 (ii), we obtain
BM11 = B(AB)♯ A − B(AB)♯ A2 (BA)♯ B,
M21 A + M22 B = (BA)♯ BA − B(AB)♯ A2 (BA)♯ A + B(AB)♯ A2 (BA)♯ A(BA)♯ BA
− B(AB)♯ A2 (BA)♯ B
= (BA)♯ BA − [B(AB)♯ A2 (BA)♯ A − B(AB)♯ A2 (BA)♯ A]
− B(AB)♯ A2 (BA)♯ B
= B(AB)♯ A − B(AB)♯ A2 (BA)♯ B.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 117-125, February 2009

ELA

http://math.technion.ac.il/iic/ela

123

Group Inverses of Block Matrices over Skew Fields

Using Lemma 2.5 (ii), we have
BM12 = B(AB)♯ A,
M21 A = (BA)♯ BA − B(AB)♯ A2 (BA)♯ A + B(AB)♯ A2 (BA)♯ A(BA)♯ BA
= B(AB)♯ A.
So
M X = XM =



A(BA)♯ B

B(AB) A − B(AB)♯ A2 (BA)♯ B

0
B(AB)♯ A



.

Secondly,
=

M XM

=


A(BA)♯ B
A A

B 0
B(AB) A − B(AB)♯ A2 (BA)♯ B


X11 X12
.
X21
0



0
B(AB)♯ A



Applying Lemma 2.5 (i) and (iii), we compute
X11 = A2 (BA)♯ B + AB(AB)♯ A − AB(AB)♯ A2 (BA)♯ B
= AB(AB)♯ A
= A,
X12 = AB(AB)♯ A = A,
X21 = BA(BA)♯ B = B.
Hence
M XM =



A
B

A
0



.

Finally,
XM X

=
=


M11 M12
A(BA)♯ B
M
M22
B(AB)♯ A − B(AB)♯ A2 (BA)♯ B
 21

Y11 Y12
.
Y21 Y22


0
B(AB)♯ A

Then
Y11 = (AB)♯ A2 (BA)♯ B − (AB)♯ A2 (BA)♯ BA(BA)♯ B + (AB)♯ AB(AB)♯ A
− (AB)♯ AB(AB)♯ A2 (BA)♯ B
= (AB)♯ A − (AB)♯ A2 (BA)♯ B
= M11 ,



Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 117-125, February 2009

ELA

http://math.technion.ac.il/iic/ela

124

Changjiang Bu, Jiemei Zhao, and Kuize Zhang

and
=
=
=
=

Y12

M12 B(AB)♯ A
(AB)♯ AB(AB)♯ A
(AB)♯ A
M12 .

We can easily get
Y21 = M21 A(BA)♯ B + M22 B(AB)♯ A − M22 B(AB)♯ A2 (BA)♯ B
= M21 ;
Y22 = M22 B(AB)♯ A = M22 .
So we have X = M ♯ .
Theorem 3.2. Let M =



A
A

B
0


, where A, B ∈ K n×n , rank(B) ≥ rank(A)

= r. Then
(i) The group inverse of M exists if and only if rank(A) = rank(B) = rank(AB) =
rank(BA).


Z11 Z12

, where
(ii) If the group inverse of M exists, then M =
Z21 Z22
Z11 = (AB)♯ A − B(AB)♯ A2 (BA)♯ ,
Z12 = B(AB)♯ − (AB)♯ A2 (BA)♯ B + B(AB)♯ A2 (BA)♯ A(BA)♯ B,
Z21 = (AB)♯ A,
Z22 = − (AB)♯ A2 (BA)♯ B.
Proof. Let X =



M11
M21

M X = XM =



M12
M22


. By Lemma 2.5, we have

B(AB)♯ A A(BA)♯ B − B(AB)♯ A2 (BA)♯ B
0
A(BA)♯ B



.

Furthermore, we can prove M XM = M, XM X = X easily. Thus, X = M ♯ .
Theorem 3.3. Let A, B ∈ K n×n , if rank(B) = rank(AB) = rank(BA). Then
AB and BA are similar.
Proof. Suppose rank(A) = r, using Lemma 2.1, there are invertible matrices
P, Q ∈ K n×n such that




Ir 0
B1
B1 X
A=P
P −1 ,
Q, B = Q−1
Y B1 Y B1 X
0 0

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 117-125, February 2009

ELA

http://math.technion.ac.il/iic/ela

125

Group Inverses of Block Matrices over Skew Fields

where B1 ∈ K r×r , X ∈ K r×(n−r) , Y ∈ K (n−r)×r . Hence


B1 B1 X
AB = P
P −1
0
0



Ir −X
Ir
B1 0
= P
0 In−r
0
0 0
BA

In−r



P −1 ,




B1 0
= Q
Q
Y B1 0


Ir
B1
0
= Q−1
Y In−r
0
−1

X

0
0



Ir
−Y

0
In−r



Q.

So AB and BA are similar.
REFERENCES

[1] C. Bu. On group inverses of block matrices over skew fields. J. Math., 35:49–52, 2002.
[2] C. Bu and C. Cao. Group inverse of product of two matrices over skew field. J. Math. Study,
35:435–438, 2002.
[3] C. Bu, J. Zhao, and J. Zheng. Group inverse for a class 2 × 2 block matrices over skew fields.
Appl. Math. Comput., 204:45–49, 2008.
[4] S.L. Campbell. The Drazin inverse and systems of second order linear differential equations.
Linear Multilinear Algebra, 14:195–198, 1983.
[5] S.L. Campbell and C.D. Meyer. Generalized Inverses of Linear Transformations. Dover, New
York, 1991 (Originally published: Pitman, London, 1979).
[6] C. Cao. Some results of group inverses for partitioned matrices over skew fields. Heilongjiang
Daxue Ziran Kexue Xuebao (Chinese), 18:5–7, 2001.
[7] C. Cao and X. Tang. Representations of the group inverse of some 2 × 2 block matrices. Int.
Math. Forum, 31:1511–1517, 2006.
[8] N. Castro-Gonz´
ales and E. Dopazo. Representations of the Drazin inverse for a class of block
matrices. Linear Algebra Appl., 400:253–269, 2005.
[9] M. Catral, D.D. Olesky, and P. van den Driessche. Group inverses of matrices with path graphs.
Electron. J. Linear Algebra, 17:219–233, 2008.
[10] X. Chen and R.E. Hartwig. The group inverse of a triangular matrix. Linear Algebra Appl.,
237/238:97–108, 1996.
[11] G.H. Golub and C. Greif. On solving block-structured indefinite linear systems. SIAM J. Sci.
Comput., 24:2076–2092, 2003.
[12] I.C.F. Ipsen. A note on preconditioning nonsymmetric matrices. SIAM J. Sci. Comput.,
23:1050–1051, 2001.
[13] K.P.S. Bhaskara Rao. The Theory of Generalized Inverses over Commutative Rings. TaylorFrancis, New York, 2002.
[14] G. Wang, Y. Wei, and S. Qian. Generalized Inverse Theory and Computations. Science Press,
Beijing, 2003.
[15] Y. Wei and H. Diao. On group inverse of singular Toeplitz matrices. Linear Algebra Appl.,
399:109–123, 2005.
[16] Wa-Jin Zhuang. Involutory functions and generalized inverses of matrices over an arbitrary
skew fields. Northeast. Math. J., (Chinese) 1:57–65, 1987.
[17] W. Zhuang. The Guidance of Matrix Theory over Skew Fields (Chinese). Science Press, Beijing,
2006.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52