vol9_pp276-281. 102KB Jun 04 2011 12:06:17 AM

The Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 9, pp. 276-281, October 2002

ELA

http://math.technion.ac.il/iic/ela

SOME INEQUALITIES FOR THE KHATRI-RAO
PRODUCT OF MATRICES∗
CHONG-GUANG CAO† , XIAN ZHANG† ‡ , AND ZHONG-PENG YANG§
Abstract. Several inequalities for the Khatri-Rao product of complex positive definite Hermitian
matrices are established, and these results generalize some known inequalities for the Hadamard and
Khatri-Rao products of matrices.
Key words. Matrix inequalities, Hadamard product, Khatri-Rao product, Tracy-Singh product,
Spectral decomposition, Complex positive definite Hermitian matrix.
AMS subject classifications. 15A45, 15A69

1. Introduction. Consider complex matrices A = (aij ) and C = (cij ) of order
m × n and B = (bij ) of order p × q. Let A and B be partitioned as A =(Aij ) and
B = (Bij ), 

where Aij 
is an mi × nj matrix and Bkl is a pk × ql matrix ( mi = m,

pk = p,
ql = q). Let A ⊗ B, A ◦ C, A ⊙ B and A ∗ B be the Kronecker,
nj = n,
Hadamard, Tracy-Singh and Khatri-Rao products, respectively. The definitions of the
mentioned four matrix products are given by Liu in [1]. Additionally, Liu [1, p. 269]
also shows that the Khatri-Rao product can be viewed as a generalized Hadamard
product and the Kronecker product is a special case of the Khatri-Rao or Tracy-Singh
products. The purpose of this present paper is to establish several inequalities for the
Khatri-Rao product of complex positive definite matrices, and thereby generalize some
inequalities involving the Hadamard and Khatri-Rao products of matrices in [1, Eq.
(13) and Theorem 8], [6, Eq. (3), Lemmas 2.1 and 2.2, Theorems 3.1 and 3.2], and [3,
Eqs. (2) and (9)].
Let S(m) be the set of all complex Hermitian matrices of order m, and S + (m)
the set of all complex positive definite Hermitian matrices of order m. For M and
N in S(m), we write M ≥ N in the L¨
owner ordering sense, i.e., M − N is positive
semidefinite. For a matrix A ∈ S + (m), we denote by λ1 (A) and λm (A) the largest

and smallest eigenvalue of A, respectively. Let B ∗ be the conjugate transpose matrix
of the complex matrix B. We denote the n × n identity matrix by In , also we write
I when the order of the matrix is clear.
2. Some Lemmas. In this section, we give some preliminaries.
∗ Received by the editors on 27 June 2000. Final version accepted for publication on 5 September
2002. Handling editor: Daniel Hershkowitz.
† Department of Mathematics, Heilongjiang University, Harbin, 150080, P. R. of China
([email protected]). Partially supported by the Natural Science Foundation of China, the
Natural Science Foundation of Heilongjiang province under grant No. A01-07, and the N. S. F. of
Heilongjiang Education Committee under grant No. 15011014.
‡ School of Mechanical and Manufacturing Engineering, The Queen’s University of Belfast, Ashby
Building, Stranmillis Road, Belfast, BT9 5AH, Northern Ireland, UK ([email protected]).
§ Department of Mathematics, Putian College, Putian, Fujian, 351100, P. R. of China
([email protected]). Partially supported by NSF of Fujian Education Committee.

276

The Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 9, pp. 276-281, October 2002


ELA

http://math.technion.ac.il/iic/ela

Some Inequalities for the Khatri-Rao Product of Matrices

Lemma 2.1. There exists an mp ×



277

mi pi real matrix Z such that Z T Z = I and

A ∗ B = Z T (A ⊙ B)Z

(2.1)

for any A ∈ S(m) and B ∈ S(p) partitioned as follows:




B11
A11 · · · A1t
B =  ···
A =  ··· ··· ··· ,
At1 · · · Att
Bt1


· · · B1t
··· ··· ,
· · · Btt

where Aii ∈ S(mi ) and Bii ∈ S(pi ) for i = 1, 2, · · · , t.
Proof. Let

Zi = Oi1 · · · Oi


i−1

Imi pi Oi

i+1

· · · Oit

T

,

i = 1, 2, · · · , t,

where Oik is the mi pk × mi pi zero matrix for any k
= i. Then ZiT Zi = I and
i, j = 1, 2, · · · , t.
ZiT (Aij ⊙ B)Zj = ZiT (Aij ⊙ Bkl )kl Zj = Aij ⊗ Bij ,



Z1


..
Letting Z = 
, the lemma follows by a direct computation.
.
Zt
If t = 2 in Lemma 2.1, then Eq. (2.1) becomes Eq. (13) of [1].
Corollary 2.2. There exists a real matrix Z such that Z T Z = I and
M1 ∗ · · · ∗ Mk = Z T (M1 ⊙ · · · ⊙ Mk )Z

(2.2)

for any Mi ∈ S(m(i)) (1 ≤ i ≤ k, k ≥ 2) partitioned as


(i)
(i)
N11 · · · N1t



Mi =  · · · · · · · · ·  ,
(2.3)
(i)
(i)
Nt1 · · · Ntt
(i)

where Njj ∈ S(m(i)j ) for any 1 ≤ i ≤ k and 1 ≤ j ≤ t.
Proof. We proceed by induction on k. If k = 2, the corollary is true by Lemma
2.1. Suppose the corollary is true when k = s, i.e., there exists a real matrix P such
that P T P = I and M1 ∗ · · · ∗ Ms = P T (M1 ⊙ · · · ⊙ Ms )P , we will prove that it is true
when k = s + 1. In fact,
=
=
=
=
=


M1 ∗ · · · ∗ Ms+1 =
(M1 ∗ · · · ∗ Ms ) ∗ Ms+1
P T (M


1 ⊙ · · · ⊙ Ms ) P ∗ Ms+1
(QT

Q = I)
QT
P T (M1 ⊙ · · · ⊙ Ms ) P ⊙ M
s+1 Q

T
T
Q P (M1 ⊙ · · ·
⊙ Ms ) P ⊙ Im(s+1) Ms+1 Im(s+1)
Q



QT P T ⊙ Im(s+1) [(M1 ⊙ · · · ⊙ Ms ) ⊙ Ms+1 ] P ⊙ Im(s+1) Q.

The Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 9, pp. 276-281, October 2002

ELA

http://math.technion.ac.il/iic/ela

278

Chong-Guang Cao, Xian Zhang, and Zhong-Peng Yang



Letting Z = P ⊙ Im(s+1) Q, the corollary follows.
If the Khatri-Rao and Tracy-Singh products are replaced by the the Hadamard
and Kronecker products in Corollary 2.2, respectively, then (2.2) becomes Lemma 2.2
in [6].

Lemma 2.3. Let A and B be compatibly partitioned matrices, then (A ⊙ B)∗ =

A ⊙ B∗.
Proof.
∗ 

∗ 
∗ 
(A ⊙ B)∗ =
(Aij ⊙ B)ij = (Aij ⊗ Bkl )kl ij = (Aij ⊗ Bkl )kl
ji










=
(Aij ⊗ Bkl ) lk ji = A∗ij ⊗ Bkl
=
A

B
ij
lk
ji
ji

=

A∗ ⊙ B ∗ .

Definition 2.4. Let the spectral decomposition of A (∈ S + (m)) be
A = UA∗ DA UA = UA∗ diag(d1 , · · · , dm )UA ,
where di > 0 for all i. For any c ∈ R, we define the power of matrix A as follows
c
Ac = UA∗ DA
UA = UA∗ diag(dc1 , · · · , dcm )UA .

Lemma 2.5. Let A ∈ S + (m), B ∈ S + (p) and c ∈ R, then
i) A ⊙ B ∈ S + (mp), λ1 (A ⊙ B) = λ1 (A)λ1 (B), and λmp (A ⊙ B) = λm (A)λp (B);
ii) (A ⊙ B)c = Ac ⊙ B c .
Proof. Let A = UA∗ DA UA and B = UB∗ DB UB be the spectral decompositions of
A and B, respectively. From Lemma 2.3 and [1, Theorem 1(a)], we derive
(2.4)(UA ⊙ UB )∗ (UA ⊙ UB ) = (UA∗ ⊙ UB∗ )(UA ⊙ UB ) = (UA∗ UA ) ⊙ (UB∗ UB ) = Imp
(2.5)

A ⊙ B = (UA∗ DA UA ) ⊙ (UB∗ DB UB ) = (UA∗ ⊙ UB∗ )(DA ⊙ DB )(UA ⊙ UB )
= (UA ⊙ UB )∗ (DA ⊙ DB )(UA ⊙ UB ).

The lemma follows from (2.4), (2.5), and the definitions of A ⊙ B and (A ⊙ B)c .
If the Tracy-Singh product is placed by the Kronecker product in Lemma 2.5,
then ii) of Lemma 2.5 becomes Lemma 2.1 in [6].
k

m(i) and c ∈ R,
Corollary 2.6. Let Mi ∈ S + (m(i)) for i = 1, 2 · · · , k, n =
i=1

then

i) M1 ⊙ · · · ⊙ Mk ∈ S + (n),
λn (M1 ⊙ · · · ⊙ Mk ) =

k


i=1

λ1 (M1 ⊙ · · · ⊙ Mk ) =

k


λ1 (Mi )

and

i=1

λm(i) (Mi );

ii) (M1 ⊙ · · · ⊙ Mk )c = M1c ⊙ · · · ⊙ Mkc .
Proof. Using Lemma 2.5, the corollary follows by induction.
If the Tracy-Singh product is replaced by the Kronecker product in Corollary 2.6,
then ii) of Corollary 2.6 becomes Eq. (3) in [6].
Lemma 2.7. [4], [5] Let H ∈ S + (n) and V be a complex matrix of order n × m
such that V ∗ V = Im , then

The Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 9, pp. 276-281, October 2002

ELA

http://math.technion.ac.il/iic/ela

279

Some Inequalities for the Khatri-Rao Product of Matrices

i) (V ∗ H r V )1/r ≤ (V ∗ H s V )1/s , where r and s are two real numbers such that s > r,
and either s
∈ (−1, 1) and r
∈ (−1, 1) or s ≥ 1 ≥ r ≥ 12 or r ≤ −1 ≤ s ≤ − 12 ;
ii) (V ∗ H s V )1/s ≤ ∆(s, r)(V ∗ H r V )1/r ,
where r and s are two real numbers such that s > r and either s
∈ (−1, 1) or

1/s 
−1/r
r(δ s − δ r )
s(δ r − δ s )
, W = λ1 (H),
r
∈ (−1, 1), ∆(s, r) =
(s − r)(δ r − 1)
(r − s)(δ s − 1)
w = λn (H) and δ = W
w.
iii) (V ∗ H s V )1/s − (V ∗ H r V )1/r

∆(s, r)I, where ∆(s, r)
=
max
θ∈[0, 1]


[θW s + (1 − θ)ws ]1/s − [θW r + (1 − θ)wr ]1/r , and r, s, W , w and δ are as in ii).

3. Main results. In this section, we establish some inequalities for the KhatriRao product of matrices.
Theorem 3.1. Let Mi ∈ S + (m(i)) (1 ≤ i ≤ k) be partitioned as in (2.3) and
k

m(i), then
n=
i=1

(i) (M1s ∗ · · · ∗ Mks )1/s ≥ (M1r ∗ · · · ∗ Mkr )1/r , where r and s are as in i) of Lemma 2.7;
k

λ1 (Mi ) and
(ii) (M1s ∗ · · · ∗ Mks )1/s ≤ ∆(s, r)(M1r ∗ · · · ∗ Mkr )1/r , where W =
i=1

w=

k


i=1

λm(i) (Mi ), and r, s, δ and ∆(s, r) are as in ii) of Lemma 2.7;

(iii) (M1s ∗ · · · ∗ Mks )1/s − (M1r ∗ · · · ∗ Mkr )1/r ≤ ∆(s, r)I, where W =
w=

k


i=1

k


λ1 (Mi ) and

k


λ1 (Mi ) and

i=1

λm(i) (Mi ), and r, s, δ and ∆(s, r) is as in iii) of Lemma 2.7.

Proof. Let H = M1 ⊙ · · · ⊙ Mk , then H ∈ S + (n), λ1 (H) =
λn (H) =

k


i=1

i=1

λm(i) (Mi ) from i) of Corollary 2.6. Therefore, using ii) of Corollary 2.6,

Corollary 2.2, and Lemma 2.7,
(M1r ∗ · · · ∗ Mkr )

1/r

=
=

=
=

T
1/r
Z (M1r ⊙ · · · ⊙ Mkr )Z
T
1/r
Z (M1 ⊙ · · · ⊙ Mk )r Z
T

1/s
Z (M1 ⊙ · · · ⊙ Mk )s Z
T

1/s
Z (M1s ⊙ · · · ⊙ Mks )Z
1/s
(M1s ∗ · · · ∗ Mks ) ,


1/s
(M1s ∗ · · · ∗ Mks )1/s = Z T (M1s ⊙ · · · ⊙ Mks )Z

1/s
= Z T (M1 ⊙ · · · ⊙ Mk )s Z

1/r
≤ ∆(s, r) Z T (M1 ⊙ · · · ⊙ Mk )r Z
T

1/r
= ∆(s, r) Z (M1r ⊙ · · · ⊙ Mkr )Z
= ∆(s, r) (M1r ∗ · · · ∗ Mkr )1/r ,

The Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 9, pp. 276-281, October 2002

ELA

http://math.technion.ac.il/iic/ela

280

Chong-Guang Cao, Xian Zhang, and Zhong-Peng Yang
1/s

1/r

=
(M1s ∗ · · · ∗ Mks ) − (M1r ∗ · · · ∗ Mkr )
T
1/s T
1/r
s
= Z (M1 ⊙ · · · ⊙ Mk ) Z
− Z (M1 ⊙ · · · ⊙ Mk )r Z
≤ ∆(s, r)I.
If the Khatri-Rao and Tracy-Singh products are replaced by the Hadamard and
Kronecker products in Theorem 3.1, respectively, then (i) becomes Theorem 3.1 in
[6], and (ii) and (iii) become Theorem 3.2 in [6].
Theorem 3.2. Let Mi ∈ S + (m(i)) (1 ≤ i ≤ k) be partitioned as in (2.3), then
(3.1)
(3.2)
(3.3)
(3.4)
(3.5)
(3.6)
(3.7)
(3.8)
(3.9)

(M1 ∗ · · · ∗ Mk )−1 ≤ M1−1 ∗ · · · ∗ Mk−1 ,

(W + w)2
(M1 ∗ · · · ∗ Mk )−1 ,
4W w


M1 ∗ · · · ∗ Mk − (M1−1 ∗ · · · ∗ Mk−1 )−1 ≤ ( W − w)2 I,
M1−1 ∗ · · · ∗ Mk−1 ≤

(M1 ∗ · · · ∗ Mk )2 ≤ M12 ∗ · · · ∗ Mk2 ,
(W + w)2
(M1 ∗ · · · ∗ Mk )2 ,
4W w
1
(M1 ∗ · · · ∗ Mk )2 − M12 ∗ · · · ∗ Mk2 ≤ (W − w)2 I,
4
M12 ∗ · · · ∗ Mk2 ≤

M1 ∗ · · · ∗ Mk ≤ (M12 ∗ · · · ∗ Mk2 )1/2 ,
W +w
(M12 ∗ · · · ∗ Mk2 )1/2 ≤ √
(M1 ∗ · · · ∗ Mk ),
2 Ww
(W − w)2
I,
(M12 ∗ · · · ∗ Mk2 )1/2 − M1 ∗ · · · ∗ Mk ≤
4(W + w)

where W and w are as in Theorem 3.1.
Proof. Noting that G ≥ H > O if and only if H −1 ≥ G−1 > O [2], we obtain
(3.1), (3.2) and (3.3) by choosing r = −1 and s = 1 in Theorem 3.1. Similarly, (3.7),
(3.8) and (3.9) can be obtained by choosing r = 1 and s = 2 in Theorem 1. Thereby,
using that G ≥ H > 0 implies G2 ≥ H 2 > 0, we derive that (3.4) and (3.5) hold.
Liu and Neudecker [3] show that
(3.10)

V ∗ A2 V − (V ∗ AV )2 ≤

1
2
(λ1 (A) − λm (A)) I
4

for A ∈ S + (m) and V ∗ V = I. Replacing A by M1 ⊙ · · · ⊙ Mk and V by Z in (3.10),
we obtain (3.6).
If we replace the Khatri-Rao product by the Hadamard product in (3.1), (3.2),
(3.3), (3.4), (3.7), (3.8) and (3.9), then we obtain some inequalities in [6]. If choosing
t = 2 and considering the real positive definite matrices in Theorem 3.2, then Theorem
3.2 becomes Theorem 8 in [1]. If choosing t = 2 and replacing the Khatri-Rao product
by the Hadamard product in (3.6) and (3.8), respectively, then we obtain Eqs. (2)
and (9) of [3].
Acknowledgement We wish to thank the referees for their helpful comments.

The Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 9, pp. 276-281, October 2002

ELA

http://math.technion.ac.il/iic/ela

Some Inequalities for the Khatri-Rao Product of Matrices

281

REFERENCES
[1] Shuangzhe Liu. Matrix results on the Khatri-Rao and Tracy-Singh products. Linear Algebra
Appl., 289:266-277, 1999.
[2] Bo-Ying Wang and Fuzhen Zhang. Schur complements and matrix inequalities of Hadamard
products. Linear and Multilinear Algebra, 43:315-326, 1997.
[3] Shuangzhe Liu and Heinz Neudecker. Several matrix Kantorrovich-type inequalities. J. Math.
Anal. Appl., 197:23-26, 1996.
[4] B. Mond and J.E. Pecaric. On Jensen’s inequality for operator convex functions. Houston J.
Math., 21:739-754, 1995.
[5] B. Mond and J.E. Pecaric. A matrix version of the Ky Fan generalization of the Kantorovich
inequality II. Linear and Multilinear Algebra, 38:309-313, 1995.
[6] B. Mond and J.E. Pecaric. On inequalities involving the Hadamard product of matrices. Electronic J. Linear Algebra, 6:56-61, 2000.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52