ICTAMI2007. 126KB Jun 04 2011 12:08:47 AM

ACTA UNIVERSITATIS APULENSIS

No 15/2008

ABOUT AN INTERMEDIATE POINT PROPERTY IN SOME
QUADRATURE FORMULAS
Ana Maria Acu
Abstract. In this paper we study a property of the intermediate point
from the quadrature formula of the Gauss-Jacobi type, the quadrature formula obtained in the paper [3] by using connection between the monospline
function and the numerical integration formula, and the generalized meanvalue formula of N. Cior˘anescu.
2000 Mathematics Subject Classification: 26D15, 65D30.
1. Introduction
In the specialized literature there are a lot of mean-value theorems. In
[1] and [8] the authors studied the property above for the intermediate point
from the quadrature formula of Gauss type.
The generalized quadrature formula of Gauss-Jacobi type has the form
([9])
Z b
m
X
α

β
(b − x) (x − a) f (x)dx =
Bm,k f (γk ) + Rm [f ],
(1)
a

k=0

the nodes γk , k = 0, m , with appears in (1) are given by
γk =

b−a
b+a
ak +
2
2
(α,β)

where ak , k = 0, m are the zeros of the Jacobi polynomial, Jm+1 and
Bm,k =


1 (b − a)α+β+1 (2m + α + β + 2)Γ(m + α + 1)Γ(m + β + 1)
.
d h (α,β) i
2
(α,β)
(m + 1)!Γ(m + α + β + 2)Jm (ak )
J
(x)
dx m+1
x=ak

For f ∈ C 2m+2 [a, b] the rest term is given by
Rm [f ] = (b−a)2m+α+β+3

f (2m+2) (ξ) (m+1)!Γ(m+α+2)Γ(m+β +2)Γ(m+α+β +2)
·
,
(2m+2)!
Γ(2m+α+β +3)Γ(2m+α+β +4)

19

A. M. Acu - About an intermediate point property in some...

a < ξ < b.
For α = β = 0 we have so-called Gauss-Legendre quadrature formula. If
f ∈ C 2m+2 [a, b], then for any x ∈ (a , b] there is cx ∈ (a, x) such that
Z

x

a

m

(x − a) X
f (t)dt =
m + 1 k=0

1

·f
h
i
d
(0,0)
(0,0)
Jm (ak )
J
(x)
dx m+1
x=ak
(x − a)2m+3 [(m + 1)!]4 (2m+2)
f
(cx ).
+
(2m + 3)[(2m + 2)!]3



x+a

x−a
ak +
2
2



(2)

Theorem 1.[1] If f ∈ C 2m+4 [a, b] and f (2m+3) (a) 6= 0, then for the interme1
cx − a
= .
diate point cx which appears in formula (2) we have lim
x→a x − a
2
In this paper we want to study the property of the intermediate point from
the quadrature formula of Gauss type with weight function w(x) = (b−x)(x−a).
In recent years a number of authors have considered generalization of
some known and some new quadrature rules. For example, P. Cerone and
S.S. Dragomir in [5] give a generalization of the midpoint quadrature rule:

Z

a

b

m−1
X

(b − a)k+1 (k)
f (t)dt =
f
[1+(−1) ] k+1
2
(k
+
1)!
k=0

where


k


(t − a)m


,

m!
Km (t) =
(t − b)m


,

m!


Z b

a+b
m
Km (t)f (m) (t)dt
+(−1)
2
a
(3)


a+b
t ∈ a,
2 
a+b
t∈(
,b
2



If f ∈ C m [a, b] and m is even , then for any x ∈ (a , b ] there is cx ∈ (a, x)

such that


Z x
m−2
k+1
X
(x − a)m+1 (m)
a+x
(k)
k (x − a)
+ m
f
f (cx )
f (t)dt =
[1 + (−1) ] k+1
2 (k + 1)!
2
2 (m + 1)!
a

k=0
(4)
In [2] was studied the following property of intermediate point from the
quadrature formula (4)
20

A. M. Acu - About an intermediate point property in some...
Theorem 2.[2] If f ∈ C 2m [a, b] , m is even and f (m+1) (a) 6= 0 , then for the
intermediate point cx that appears in formula (4), it follows:
cx − a
1
= .
x→a x − a
2
lim

In this paper we want to give a property of intermediate point from a
quadrature formula with the weight function w : [a, b] → (0, ∞), w(x) =
(b − x)(x − a).
N. Cior˘anescu demonstrated in [6] that the following formula is valid

Zb

f (m) (cb )
f (x)pm (x)w(x)dx =
m!

Zb

xm pm (x)w(x)dx,

(5)

a

a

where f ∈ C m [a, b] and (pn )n≥0 is a sequence of orthogonal polynomials on
[a, b], in respect to a weight function w : [a, b] → (0, ∞).
In [4], the authors study a property of the intermediate point from the
mean-value formula of N. Cior˘anescu.
Theorem 3.[4] If f ∈ C m+1 [a, b] and f (m+1) (a) 6= 0, then the intermediate
point of the mean-value formula (5) satisfies the relation:
1
cb − a
=
b→a b − a
m+2
lim

In this paper we give a property of the intermediate point from the generalized mean-value formula of N. Cior˘anescu.
2. An intermediate point property in the quadrature
formulas of Gauss-Jacobi type
Let
Z

a

b

m
(b−a)3 X
(b−x)(x−a)f (x)dx =
m+3 k=0



b+a
b−a
1
f
ak +
d h (1,1) i
2
2
(1,1)
Jm+1 (x)
Jm (ak)
dx
x=ak
(m+1)!4 (m+2)(m+3)
f (2m+2) (ξ) (6)
+ (b−a)2m+5
4(2m+2)!3 (2m+3)2 (2m+5)
21

A. M. Acu - About an intermediate point property in some...
be the quadrature formula of Gauss-Jacobi type (1), which α = β = 1.
If f ∈ C 2m+2 [a, b], then for any x ∈ (a , b] there is cx ∈ (a, x) such that
Z

a

x

m
(x−a)3 X
(x−t)(t−a)f (t)dt =
m+3 k=0



1
x−a
x+a
ak +
f
d h (1,1) i
2
2
(1,1)
Jm+1 (x)
Jm (ak)
dx
x=ak
4
(m+1)! (m+2)(m+3)
+ (x−a)2m+5
f (2m+2) (cx ). (7)
4(2m+2)!3 (2m+3)2 (2m+5)

In this section we give a property of the intermediate point, cx , from the
quadrature formula of Gauss-Jacobi type (7). Here we prove a lemma which
help us in proving our theorem.
Lemma 1. If ak , k = 0, m are the
then the following relations hold:

i−3
ak + 1
m
X
2
=
d h (1,1) i
(1,1)
k=0 Jm (ak )
J
(x)
dx m+1
x=ak
2m+2

ak + 1
m
X
2
=
d h (1,1) i
(1,1)
k=0 Jm (ak )
J
(x)
dx m+1
x=ak
·
2m+3
ak + 1
m
X
2
h
i
d
(1,1)
(1,1)
k=0 Jm (ak )
Jm+1 (x)
dx
x=ak


=



(1,1)

zeroes of the Jacobi polynomials, Jm+1 ,

m+3
, for i = 3, 2m + 4,
i(i − 1)

(8)

m+3
(2m + 3)(2m + 4)(2m + 5)

(9)



(m + 1)!4 (m + 2)2 (m + 3)
,
(2m + 3) −
2(2m + 2)!2 (2m + 3)
1
22m+3



22m+2
2m + 5

22m (m + 1)!4 (m + 2)(m + 3)2
(2m + 2)!2 (2m + 3)(2m + 5)



.

(10)

Proof. If we choose a = 0, b = 1 and f (t) = ti−3 , i = 3, 2m + 5 in the
quadrature formula (6), then we obtain the relations (8) and (9).

22

A. M. Acu - About an intermediate point property in some...
If we choose a = −1, b = 1 and f (t) = ti , i = 0, 2m + 2 in the quadrature
formula (6), then we obtain the following relations:
m
X



aik
m+3
1+(−1)i , i = 0, 2m+1(11)
=
h
i
d
4(i+1)(i+3)
(1,1)
(1,1)
k=0 Jm (ak )
Jm+1 (x)
dx
x=ak
m
2m+2
X
ak
m+3
(12)
=
h
i
d
2(2m
+
3)(2m
+
5)
(1,1)
(1,1)
k=0 Jm (ak )
J
(x)
dx m+1
x=ak


4
2m+1 (m + 1)! (m + 2)(m + 3)
· 1−2
.
(2m + 2)!2 (2m + 3)
By using the following formulas (see [10]):
Γ(2m + α + 1)Γ(m + 1) (α,− 12 ) 2
(2x − 1),
Jm
Γ(m + α + 1)Γ(2m + 1)
Γ(2m + α + 2)Γ(m + 1) (α, 12 ) 2
(α,α)
J2m+1 (x) =
xJm (2x − 1),
Γ(m + α + 1)Γ(2m + 2)
d  (α,β) 1
(α+1,β+1)
Jm (x) = (m + α + β + 1)Jm−1
(x),
dx
2
(α,α)

J2m (x) =

we obtain
(1,1)

J2m (ak )

d h (1,1) i
2(2m+1)2 (1,−21) 2
(2,−1)
J2m+1 (x)
Jm (2ak −1)Jm 2 (2a2k −1), (13)
=
dx
m+1
x=ak
i
d h (1,1)
2(2m + 5)(2m + 3) 2
(1,1)
J2m+1 (ak )
J2m+2 (x)
· ak
(14)
=
dx
(m + 2)
x=ak
(2, 1 )
(1, 1 )
·Jm 2 (2a2k − 1)Jm 2 (2a2k − 1).

From the identity
(α,β)
(β,α)
Jm
(x) = (−1)m Jm
(−x)

it follows that
ak + am−k = 0,

(15)

where ak , k = 0, m are the zeroes of Jacobi polynomial of degree m + 1,
(1,1)
Jm+1 .
23

A. M. Acu - About an intermediate point property in some...
From (13), (14) and (15) we obtain
m
X
k=0

therefore 

a2m+3
k
= 0,
h
i
d
(1,1)
(1,1)
(x)
Jm (ak )
J
dx m+1
x=ak

2m+3
ak + 1
m
X
1
2
= 2m+3
h
i
d
2
(1,1)
(1,1)
k=0 Jm (ak )
Jm+1 (x)
dx
x=ak
m 2m+2
X
X  2m + 3 
+
i



m
X


k=0

a2m+3
k
d h (1,1) i
(1,1)
Jm+1 (x)
Jm (ak )
dx
x=ak



aik

h
i

d
(1,1)
(1,1)
k=0 i=0
Jm+1 (x)
Jm (ak )
dx
x=ak
X

m
2m+2
i
X
1
ak
2m + 3
= 2m+3
d h (1,1) i
i
2
(1,1)
i=0
k=0 Jm (ak )
J
(x)
dx m+1
x=ak
and by using (11) and (12) it follows the relation (10).

Theorem 4. If f ∈ C 2m+6 [a, b] and f (2m+3) 6= 0, then for the intermediate
point cx which appears in formula (7) we have
lim

x→a

1
cx − a
= .
x−a
2

Proof. Let us consider F, G : [a, b] → R defined by
Z x
(x − t)(t − a)f (t)dt
F (x) =

(16)

a

m
(x − a)3 X

m + 3 k=0



x +a
x−a
1
f
ak +
d h (1,1) i
2
2
(1,1)
Jm (ak )
Jm+1 (x)
dx
x=ak
4
(m
+
1)!
(m
+
2)(m
+
3)
f (2m+2) (a),
(17)
− (x − a)2m+5
3
2
4(2m + 2)! (2m + 3) (2m + 5)
G(x) = (x − a)2m+6 .
We have that F and G are (2m + 6) times derivable on [a, b],
G(i) (x) 6= 0, i = 1, 2m + 5 any x ∈ (a, b] ,
G(i) (a) = 0, i = 1, 2m + 5.
24

A. M. Acu - About an intermediate point property in some...
We observe that F (a) = F ′ (a) = F ′′ (a) = 0.
For i = 3, 2m + 4 we have
i−3
ak +1
m
i(i−1)(i−2) X
2
(i)
(i−3)
·f (i−3) (a)
F (a) = (i−2)f
(a)−
d h (1,1) i
m+3
(1,1)
k=0 Jm (ak )
J
(x)
dx m+1
x=ak


and by using relation (8) we obtain F (i) (a) = 0.
From relations (9) and (17) we obtain
(2m + 3)(2m + 4)(2m + 5)
F (2m+5) (a) = (2m + 3)f (2m+2) (a) −
m+3
2m+2

ak + 1
m
X
2
· f (2m+2) (a)
·
d h (1,1) i
(1,1)
k=0 Jm (ak )
(x)
J
dx m+1
x=ak
4
2
(m + 1)! (m + 2) (m + 3) (2m+2)

f
(a) = 0.
2(2m + 2)!2 (2m + 3)
By using successive l ′ Hospital rule and
F (2m+6) (a) = (2m + 4)f (2m+3) (a) − 2(2m + 4)(2m + 5)

2m+3
ak + 1
m
X
2
· f (2m+3) (a),
·
d h (1,1) i
(1,1)
k=0 Jm (ak )
J
(x)
dx m+1
x=ak
(2m+6)
G
(a) = (2m + 6)!
we obtain

f (2m+3) (a)
F (2m+6) (x)
F (x)
= lim (2m+6)
=
(18)
x→a G
x→a G(x)
(x)
(2m + 6)!



2m+3
ak +1
m


X
2


· (2m + 4)−2(2m+4)(2m+5) ·
,
h
i
d


(1,1)
(1,1)
k=0 Jm (ak )
Jm+1 (x)
dx
x=ak
lim

25

A. M. Acu - About an intermediate point property in some...
but
(2m+2)
4
F (x)
(cx ) − f (2m+2) (a)
2m+5 (m + 1)! (m + 2)(m + 3) f
lim
= lim (x − a)
x→a G(x)
x→a
4(2m+2)!3 (2m+3)2 (2m+5)
(x − a)2m+6
f (2m+2) (cx ) − f (2m+2) (a) cx − a
(m + 1)!4 (m + 2)(m + 3)
·
·
,
= lim
x→a 4(2m+2)!3 (2m+3)2 (2m+5)
cx − a
x−a
namely
(m + 1)!4 (m + 2)(m + 3)
cx − a
F (x)
=
· f (2m+3) (a) · lim
.
(19)
lim
3
2
x→a x − a
x→a G(x)
4(2m+2)! (2m+3) (2m+5)

From (10), (18) and (19) it follows that the intermediate point cx which
appears in formula (7) verifies the property (16).
3. An intermediate point property in a quadrature formula
with weight function w(x) = (b − x)(x − a)
In [3] was studied the following quadrature formula
Z

b

w(t)f (t)dt =

a

m−1
X
k=0



(−1)k +1 ·

(b−a)k+3
f (k)
2k+2 (k+1)!(k+3)




a+b
+R[f ] ,
2

where f ∈ C m [a, b], w(t) = (b − t)(t − a),
Z b
m
Mn (t)f (m) (t)dt
R[f ] = (−1)
a

and



m+1
m+2
(t

a)
(t

a)
a
+
b


−2
, t ∈ [a,
 (b − a)
(m + 1)!
(m + 2)!
2 

Mm (t) =
.
m+1
m+2
(t − b)
(t − b)
a+b


−2
, t∈
,b
 (a − b)
(m + 1)!
(m + 2)!
2

If f ∈ C m [a, b] and m is even , then for any x ∈ (a , b ] there is cx ∈ (a, x)
such that


Z x
m−2
X

a+x
(x − a)k+3
(k)
k
f
(x − t)(t − a)f (t)dt =
(−1) + 1 · k+2
2 (k + 1)!(k +3)
2
a
k=0
+

(x − a)m+3
f (m) (cx ).
2m+1 (m + 1)!(m + 3)
26

(20)

A. M. Acu - About an intermediate point property in some...
In the above condition we have the following theorem
Theorem 5. If f ∈ C 2m+2 [a, b] , m is even and f (m+1) (a) 6= 0 , then for the
intermediate point cx that appears in formula (20), it follows:
lim

x→a

cx − a
1
= .
x−a
2

Proof. Let F, G : [a, b] → R definite as follows
Z

F (x) =

x

(x−t)(t−a)f (t)dt−

a

m−2
X
k=0

m+3



(−1)k +1 ·



(x−a)k+3
(k) a+x
f
2k+2 (k+1)!(k+3)
2

(x − a)
f (m) (a),
+ 1)!(m + 3)
G(x) = (x − a)m+4 .


2m+1 (m

We observe that F (a) = F ′ (a) = F ′′ (a) = 0. For i = 3, m + 2 we have

i(i − 1)(i − 2)
(i)
(i−3)
F (a) = f
(a) (i − 2) −
2i−1
)


i−3
X


1
i

3
= 0.
·
(−1)k + 1
k
(k + 1)(k + 3)
k=0
We find
F

(m+3)

·



(m + 1)(m + 2)(m + 3)
2m+2
)


m−2
X

m
+
2
1
m
− m+1 = 0
(−1)k + 1
k
(k + 1)(k + 3)
2
k=0

(a) = f

(m)

(a) (m + 1) −

and
F

(m+4)


(m + 2)(m + 3)(m + 4)
(a) = f
(a) (m + 2) −
2m+3
)


m−2
X

1
m
+
1
·
(−1)k + 1
k
(k + 1)(k + 3)
k=0
(m+1)

=

(m + 2)(m + 4) (m+1)
f
(a).
2m+2
27

A. M. Acu - About an intermediate point property in some...
We have that F and G are (m+4) times derivable on [a, b], F (i) (a) = G(i) (a) =
0, for i = 0, m + 3 and G(i) (x) 6= 0, i = 1, m + 3 any x ∈ (a, b]. By using
successive l ′ Hospital rule we obtain
F (x)
1
F m+4 (x)
= lim m+4
= m+2
f (m+1) (a),
x→a G(x)
x→a G
(x)
2
(m + 1)!(m + 3)

(21)

cx − a
1
F (x)
= m+1
f (m+1) (a) lim
.
x→a x − a
x→a G(x)
2
(m + 1)!(m + 3)

(22)

lim

but

lim

From relation (21) and (22) we have
1
cx − a
= .
x→a x − a
2
lim

4. An intermediate point property from the mean-value
˘nescu
formula of N. Ciora
The polynomial
Ps,m (x) = xm + am−1 xm−1 + · · · + a1 x + a0 ,
which satisfies the orthogonality conditions
Z b
[Ps,m (x)]2s+1 xk w(x)dx = 0, k = 0, 1, · · · , m − 1
a

is called s-orthogonal polynomial with respect to the weight function
w : [a, b] → (0, ∞).
The following equality is the generalized mean-value formula of N. Cior˘anescu
(see [9])
Zb

2s+1
f (x)Ps,m
(x)w(x)dx

f (m) (cb )
=
m!

Zb

2s+1
xm Ps,m
(x)w(x)dx.

(23)

a

a

We observe that for s = 0 we obtain the mean-value formula of N. Cior˘anescu
(5).
We construct the functions (Vk )k=0,m as follows
28

A. M. Acu - About an intermediate point property in some...

2s+1
V0 (x) = w(x)Ps,m
(x),

Vj (x) =

Z

x

Vj−1 (x)dx, j = 1, m.

a

Here we prove a lemma which help us in proving our theorem.
Lemma 2. We have the following equalities
Vj (a) = 0, Vj (b) = 0,
for any j = 1, m,
Z b
Z b
2s+1
m
f (m) (x)Vm (x)dx.
f (x)Ps,m (x)w(x)dx = (−1)

(24)
(25)

a

a

Proof. We have Vj (a) = 0, for any j = 1, m.
Z
Z b
2s+1
V0 (x)dx = Ps,m
(x)w(x)dx = 0.
V1 (b) =
a

For every k ∈ {2, 3, . . . , m} we have
Z b  k−1 (k−1)
Z b
x
Vk−1 (x)dx =
Vk−1 (x)dx
Vk (b) =
(k − 1)!
a
a
 k−1 (ν) b
k−2
X
x

=
(−1)k−ν−2 [Vk−1 (x)](k−ν−2)


(k − 1)!
ν=0
a
Z b
k−1
x
+ (−1)k−1
[Vk−1 (x)](k−1)
dx
(k − 1)!
a
b
Z
k−2
X
xk−ν−1
(−1)k−1 b
k−ν−2
V0 (x)xk−1 dx
=
(−1)
Vν+1 (x)
+ (k − 1)!
(k

ν

1)!
a
a
ν=0
Z
b
(−1)k−1
2s+1
=
xk−1 Ps,m
(x)w(x)dx = 0.
(k − 1)! a
We have
Z b
m−1
X
b
2s+1
f (x)Ps,m
(x)w(x)dx =
(−1)m−ν−1 f (m−ν−1) (x)Vm−ν (x) a
a

ν=0

m

+ (−1)

Z

b

f (m) (x)Vm (x)dx,

a

and by using relation (24) we obtain the equality (25).
29

A. M. Acu - About an intermediate point property in some...
Theorem 6. If f ∈ C m+1 [a, b] and f (m+1) (a) 6= 0, then the intermediate
point of the mean-value formula (23) satisfies the relation:
cb − a
1
=
b→a b − a
m+2
lim

(26)

Proof. From (23) and (25) we can written
Zb

2s+1
f (x)Ps,m
(x)w(x)dx

f (m) (cb )
=
m!

Zb

2s+1
xm Ps,m
(x)w(x)dx

a

a

m (m)

= (−1) f

Z

(cb )

b

Vm (x)dx.

(27)

a

From relations (25) and (27) we obtain
Z

b

f

(m)

(x)Vm (x)dx = f

(m)

(cb )

Z

b

Vm (x)dx.

a

a

We consider the functions
Z b
Z b
(m)
(m)
Vm (x)dx,
f (x)Vm (x)dx − f (a)
F (b) =
a

a

G(b) = (b − a)m+2 .

Since

k−1 
X
k−1
F (b) =
f (m+k−1−ν) (b)Vm−ν (b) − f (m) (a)Vm−k+1 (b),
ν
ν=0
m−1
X m 


(m+1)
F
(b) =
f (2m−ν) (b)Vm−ν (b) + f (m) (b) − f (m) (a) V0 (b),
ν
(k)

ν=0

by using successive l ′ Hospital rule, we have
F (b)
f (m+1) (a)
=
V0 (a),
b→a G(b)
(m + 2)!
lim

but

30

(28)

A. M. Acu - About an intermediate point property in some...

f

(m)

(cb )

Zb

Vm (x)dx − f

(m)

(a)

F (b)
a
= lim
b→a G(b)
b→a
(b − a)m+2
cb − a
V0 (a) (m+1)
f
(a) · lim
.
=
b→a b − a
(m + 1)!
lim

Zb

Vm (x)dx

a

(29)

From (28) and (29) it follows that the intermediate point cb from the
generalized mean-value formula of N. Cior˘anescu verifies the property (26).
References
[1] A.M. Acu, An intermediate point property in the quadrature formulas
of Gauss-Jacobi type , Advances in Applied Mathematical Analysis, Vol. 1,
Nr.1, 2006.
[2] A.M. Acu, An intermediate point property in the quadrature formulas
, Advances in Applied Mathematical Analysis, (to appear)
[3] A.M. Acu, Monosplines and inequalities for the remaider term of
quadrature formulas, General Mathematics, Vol. 15, No. 1, 2007, 81-92.
[4] D.Acu, P. Dicu, About some properties of the intermediate point in
certain mean-value formulas, General Mathematics, Vol. 10, No. 1-2, 2002,
51-64.
[5] P. Cerone and S.S.Dragomir, Trapezoidal-type Rules from an Inequalities Point of View,Handbook of Analytic-Computational Methods in Applied
Mathematics, Editor: G. Anastassiou, CRC Press, New York, (2000),65-134.
[6] N. Cior˘anescu, La g´en´eralisation de la premi´ere formule de la moyenne,
L ′ einsegment Math., Gen´eve, 37 (1938), 292 - 302.
[7] P. Dicu, An intermediate point property in some of classical generalized
formulas of quadrature, General Mathematics, Vol. 12, No. 1, 2004, 61-70.
[8] P. Dicu, An intermediate point property in the quadrature formulas of
type Gauss , General Mathematics, Vol. 13, No. 4, 2005, 73-80.
[9] D.D. Stancu, G. Coman, P.Blaga, Analiza numerica si Teoria aproximarii, Vol.II, Presa Universitara Clujeana, Cluj-Napoca, 2002.
[10] G. Szeg¨o , Orthogonal Polynomials, American Mathematical Society,
Colloquium Publication, Volume 23, 1939.
31

A. M. Acu - About an intermediate point property in some...
Author:
Ana Maria Acu
Department of Mathematics
University ”Lucian Blaga” of Sibiu
Str. Dr. I. Rat.iu, No. 5-7
550012 - Sibiu, Romania
email:[email protected]

32

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52