Daniel_breaz. 44KB Jun 04 2011 12:08:35 AM

TWO STARLIKENESS PROPERTIES FOR THE BERNARDI
OPERATORS
by
Daniel Breaz and Nicoleta Breaz

f is starlike, then F is also starlike.In this paper we extend
this result if f satisfies larger conditions and proving that F is starlike of order 2 3 and 1 3 ,
where F is the Bernardi integral operator.

Abstract. It is well known that if

Let U = {z : z < 1} the unit disc in the complex plane, and let H (U ) the space of
holomorphic functions in U.
Let An denote the class of functions f of the form
Introductions.

f ( z ) = z + a n +1 z n +1 + a n + 2 z n + 2 + ..., z ∈ U

wich are analytic in the unit disc U and A1 = A .
Let the class of univalent functions S = { f : f ∈ H u (U ), f (0 ) = f ′(0 ) − 1 = 0} and let




zf ′(z )
S ∗ (α ) =  f : Re
> α , z ∈U 
f (z )



be the class of the starlike functions of the order α ,0 ≤ α < 1 , in U. For α = 0 ,

denote S ∗ (0 ) = S ∗ the class of the starlike functions in U.
Consider the following integral operator

where f ∈ An .

F (z ) =

γ +1



∫ f (t )t
z

γ −1

dt , γ ≥ 0 ,

0

Lemma A.[1] Let q univalent in U and let θ and φ analytic functions in the domain
D ⊆ q(U ) , with φ (w) ≠ 0 , when w ∈ q(U ) .

7

Q(z ) = nzq ′(z )φ [q( z )] h(z ) = θ [q(z )] + Q(z )

Let

and suppose that next condition is satisfy:

i)

Q is starlike

ii)

Re

and

θ ′[q( z )] zQ ′(z ) 
zh ′( z )
= Re 
+
 >0.
Q( z )
 φ [q( z )] Q( z ) 

If p is analytic in U, with


p(0 ) = q(0), p ′(0 ) = ... = p (n −1) (0 ) = 0,

and

p(U ) ⊂ D

θ [ p(z )] + zp ′( z )φ [ p( z )] p θ [q( z )] + zq ′(z )φ [q( z )] = h( z )

then p p q and q is the best dominant.
Main results.
Theorem 1. Let

h( z ) =
If f ∈ An and

2
2nz
+
2 − z (2 − z )(2 + 2γ − γz )
zf ′( z )

p h( z ) ,
f (z )

then
Re
where

zF ′( z ) 2
> ,
F (z ) 3

1+ γ
F (z ) = γ
z

∫ f (t )t
z

0


8

γ −1

dt (1)

Proof. The relation (1) implies:

γF ( z ) + zF ′( z ) = (γ + 1) f ( z )

Let

The relation (2) implies

But

implies

zF ′( z )
.

F (z )

p(z ) =

zf ′( z )
zp ′(z )
+ p(z ) =
.
f (z )
p(z ) + γ
zf ′( z )
p h( z )
f (z )

zp ′(z )
+ p ( z ) p h( z ) .
p(z ) + γ

We apply the lemma A for proved that


Re
If we let:

zF ′( z ) 2
> .
F (z ) 3

q( z ) =

2
2− z

θ (w) = w

φ (w) =

1
w+γ

θ [q( z )] =

φ [q(z )] =

2
2− z

2− z
2 + 2γ − γz

9

(2)

Q( z ) = nzq ′( z )φ [q( z )] =

h( z ) = θ [q(z )] + Q( z ) =

(2 − z )(2 + 2γ − γz )
2nz

.


2
2nz
+
.
2 − z (2 − z )(2 + 2γ − γz )
Since Q is starlike and Re φ [q(z )] > 0 , by lemma A we deduce
zF ′(z )
zF ′(z ) 2
2
p
⇒ Re
ppq⇔
> .
3
F (z )
F (z )
2− z
Theorem 2. Let
2+ z

4nz
+
h( z ) =
.
2 − z (2 − z )(2 + 2γ + (1 − γ )z )
If f ∈ An and
zf ′( z )
p h( z ) ,
f (z )
then
zF ′(z ) 1
Re
> ,
F (z ) 3
where
F (z ) =

Proof. We are

Let

We deduce

But

1+ γ


∫ f (t )t
z

γ −1

dt .

0

γF ( z ) + zF ′( z ) = (γ + 1) f ( z )
p(z ) =

zF ′( z )
.
F (z )

zf ′( z )
zp ′(z )
+ p(z ) =
.
f (z )
p(z ) + γ
zf ′( z )
p h( z )
f (z )

10

(3)

zp ′(z )
+ p ( z ) p h( z ) .
p(z ) + γ

and obtained

In lemma we consider:

q(z ) =

2+ z
2−z

θ (w ) = w

φ (w) =

1
w+γ

θ [q( z )] =
φ [q(z )] =

2− z
.
2 + 2γ + (1 − γ )z

Q( z ) = nzq ′( z )φ [q( z )] =
h( z ) = θ [q(z )] + Q( z ) =

2+ z
2− z

2nz
(2 − z )(2 + 2γ + (1 − γ )z )

2+ z
2nz
+
.
(
)
(
2 − z 2 − z 2 + 2γ + (1 − γ )z )

Sience Q is starlike and Re φ [q(z )] > 0 , by lemma A obtained
zF ′(z ) 1 + z
zF ′(z ) 1
ppq⇔
p
⇒ Re
>
F (z ) 1 − z
F (z ) 3

REFERENCES

[1].Miller, S.S. and Mocanu P.T., On some classes of first differential subordinations,
Michigan Math. J. 32, pp. 185-195, 1985.
[2].Mocanu, P.T., On a class of first-order differential subordinations, Babes-Bolyai
Univ., Fac. Of Math. Res. Sem., Seminar on Mathematical Analysis, Preprint 7, pp.
37-46, 1991.

11

[3].Oros, Gh. On starlike images by an integral operator, Mathematica, Tome 42(65),
No 1, 2000, pp. 71-74.
[4].Breaz, D., Breaz, N. Starlikeness conditions for the Bernardi operator, to be
appear.
Authors:

Daniel Breaz- „1 Decembrie 1918” University of Alba Iulia, str. N. Iorga, No. 13,
Departament of Mathematics and Computer Science, email: [email protected]
Nicoleta Breaz- „1 Decembrie 1918” University of Alba Iulia, str. N. Iorga, No. 13,
Departament of Mathematics and Computer Science, email: [email protected]

12

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52