Simulasi Uji Kebisingan (Noise) Pada Pompa Sentrifugal Skala Rumah Tangga Menggunakan Perangkat Lunak FEM

(1)

27

SIMULASI UJI KEBISINGAN (NOISE) PADA POMPA

SENTRIFUGAL SKALA RUMAH TANGGA MENGGUNAKAN

PERANGKAT LUNAK FEM

SKRIPSI

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik

MASRURI

110401126

DEPARTEMEN TEKNIK MESIN

FAKULTAS TEKNIK

UNIVERSITAS SUMATERA UTARA

2015


(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

36 ABSTRACT

The pump is a fluid machine which is used as a means of fluid transport water from one place to another by using mechanical energy that flow through the fluid. Water plays an important role in human survival, if there is damage to the pump could potentially interfere with the activity of the human life. Therefore it is very necessary to keep the pump can operate reliably with high performance. Groundwater has physical properties different in every place that affect the birth of vibration which then cause noise pump that will result in the performance of a centrifugal pump. By measuring the noise at the pump can know the type of failure that occurred. Thus we can determine the condition of the pump and treatment should be done. The purpose of this research is a major component of the pump identify, old and new conditions that cause noise is most dominant in a way to simulate the three main components of the pump and the pump intact using FEM software also to show the noise contour. Simulation varied with distance measuring 5, 10, 15 and 20 cm on the axis X, -X, Y, -Y and Z. From the simulation results we can conclude that the pump impeller is a component that raises the highest noise is 79.052 dB (new pump) and 88.425 dB (old pump) and noise values obtained in the new pump is; (distance measuring 5cm axes X, Y, -Y and Z = 73.2; 97.7; 96.3; 79.5), (distance measuring 10cm X axis, Y, -Y and Z = 72.2; 94 , 6; 93.7; 73.5), (distance measuring 15cm X axis, Y, -Y and Z = 70.12; 91.2; 89.2; 72.5), (distance measuring 20cm X axis, Y, -Y and Z = 63.3; 86.0; 85.4; 64.2), respectively in units of dB (decibel) whereas in the old pump is; (distance measuring 5cm axes X, Y, - Y and Z = 84.222; 99.25; 98.7; 81.5), (distance measuring 10cm X axis, Y, -Y and Z = 80.906; 95.6; 96.3; 74.327), (distance measuring 15cm axis X, Y, -Y and Z = 76.032; 93.7; 92.2; 73.8), (distance measuring 20cm X axis, Y, -Y and Z = 75.094; 87.5; 86.6; 68.504 ), respectively in units of dB (decibels).

Keywords: Mechanical energy, noise, centrifugal pumps, simulation, decibel, frequency


(11)

37 ABSTRAK

Pompa adalah mesin fluida yang digunakan sebagai alat transportasi fluida salah satunya air dari suatu tempat ke tempat lain dengan menggunakan energi mekanik yang mengaliri fluida. Air sangat berperan dalam kelangsungan hidup manusia, jika terjadi kerusakan pada pompa secara potensial dapat mengganggu aktivitas kehidupan manusia tersebut. Oleh sebab itu sangat perlu untuk menjaga agar pompa dapat beroperasi handal dengan performansi yang tinggi. Air tanah memiliki sifat fisik yang berbeda-beda di setiap tempat yang mempengaruhi lahirnya getaran yang kemudian menimbulkan kebisingan (noise) pompa yang akan berakibat pada kinerja pompa sentrifugal. Dengan mengukur noise pada pompa dapat diketahui jenis kegagalan yang terjadi. Dengan demikian kita dapat mengetahui kondisi pompa dan perawatan yang harus dilakukan. Adapun tujuan penelitian ini adalah mengidentifikas komponen utama pompa kondisi lama dan baru yang menimbulkan kebisingan (noise) paling dominan dengan cara melakukan simulasi pada tiga komponen utama pompa dan pada pompa secara utuh menggunakan perangkat lunak FEM serta untuk menampilakn kontur kebisingannya. Simulasi divariasikan dengan jarak ukur 5, 10, 15 dan 20 cm pada sumbu X, -X, Y, -Y dan Z. Dari hasil simulasi dapat disimpulkan bahwa impeller adalah komponen pompa yang menimbulkan kebisingan paling tinggi yaitu 79,052 dB (pompa baru) dan 88,425 dB (pompa lama) dan diperoleh nilai kebisingan pada pompa baru adalah; (jarak ukur 5cm sumbu X, Y, -Y dan Z = 73,2 ; 97,7 ; 96,3 ; 79,5), (jarak ukur 10cm sumbu X, Y, -Y dan Z = 72,2 ; 94,6 ; 93,7 ; 73,5), (jarak ukur 15cm sumbu X, Y, -Y dan Z = 70,12 ; 91,2 ; 89,2 ; 72,5), (jarak ukur 20cm sumbu X, Y, -Y dan Z = 63,3 ; 86,0 ; 85,4 ; 64,2), secara berturut-turut dalam satuan dB(desibel) sedangkan pada pompa lama adalah ;(jarak ukur 5cm sumbu X, Y, -Y dan Z = 84,222 ; 99,25 ; 98,7 ; 81,5), (jarak ukur 10cm sumbu X, Y, -Y dan Z = 80,906 ; 95,6 ; 96,3 ; 74,327), (jarak ukur 15cm sumbu X, Y, -Y dan Z = 76,032 ; 93,7 ; 92,2 ; 73,8), (jarak ukur 20cm sumbu X, Y, -Y dan Z = 75,094 ; 87,5 ; 86,6 ; 68,504), secara berturut-turut dalam satuan dB(desibel).

Kata kunci: Energi mekanik, kebisingan, pompa sentrifugal, simulasi, desibel, frekuensi


(12)

i KATA PENGANTAR

Puji dan syukur penulis ucapkan ke hadirat Allah SWT atas segala karunia dan rahmat-Nya yang senantiasa diberikan kepada penulis, sehingga penulis dapat menyelesaikan skripsi ini.

Skripsi ini adalah salah satu syarat untuk dapat lulus menjadi Sarjana Teknik di Departemen Teknik Mesin Fakultas Teknik Universitas Sumatera Utara. Adapun judul skripsi ini adalah “Simulasi Uji Kebisingan (Noise) Pada Pompa Sentrifugal Skala Rumah Tangga Menggunakan Perangkat Lunak FEM” Selama penulisan skripsi ini penulis banyak mendapat bimbingan dan bantuan dari berbagai pihak. Oleh karena itu dalam kesempatan ini penulis menyampaikan banyak terima kasih kepada:

1. Kedua orang tua tercinta, yang telah memberikan segala dukungan tak terhingga baik dukungan moril dan materil.

2. Bapak Dr.Ir. M.Sabri, M.T, selaku dosen pembimbing yang telah banyak meluangkan waktunya membimbing penulis hingga skripsi ini dapat terselesaikan.

3. Bapak Dr.Ing.Ir. Ikhwansyah Isranuri selaku dosen Ketua Jurusan Departemen Teknik Mesin Fakultas Teknik Universitas Sumatera Utara

4. Abangda Fadly Ahmad Kurniawan Nasution, ST selaku mahasiswa Magister Teknik Mesin sekaligus koordinator laboratorium Noise and Vibration Research Center.

5. Abangda Nazwir Fahmi Damanik, Yogi Aldiansyah, Toto Wibowo, Afrizal dan Jeffry yang telah banyak membagikan ilmunya kepada penulis.

6. Seluruh Staf Pengajar pada Departemen Teknik Mesin Fakultas Teknik Universitas Sumatera Utara yang telah memberikan pengetahuan kepada penulis hingga akhir studi dan seluruh pegawai administrasi di Departemen Teknik Mesin.

7. Saudara Edi Halpita Putra, Budi Ari Sasmito, Kahar Sinaga, Kin Tawarmiko, Indra Hermawan, Syugito, Teguh Iman Widodo, Dino Hastrino, Erwinsyah Batubara, Rio Martua Harahap, Fandi Aprianto dan teman-teman mahasiswa


(13)

ii Teknik Mesin USU khususnya untuk stambuk 2011, yang telah banyak memberikan dukungan dan sharing dalam penyelesaian skripsi ini.

8. Kakak-kakakku tercinta Aulia A.md dan Chairul Umam S.E yang terus mendukung hingga skripsi ini selesai.

9. Riza Umami Putri Karina yang terus memberikan motivasi dalam pengerjaan skripsi ini.

Penulis menyadari bahwa skripsi ini belum sempurna, baik dari segi teknik maupun dari segi materi. Oleh sebab itu, demi penyempurnaan skripsi ini kritik dan saran sangat penulis harapkan.

Akhir kata, penulis berharap agar laporan ini bermanfaat bagi pembaca pada umumnya dan penulis sendiri pada khususnya.

Medan, 01 September 2015 Penulis,

Masruri


(14)

iii DAFTAR ISI

Halaman

KATA PENGANTAR ...i

DAFTAR ISI ...iii

DAFTAR GAMBAR ...v

DAFTAR TABEL ...vii

DAFTAR NOTASI ...viii

BAB 1 PENDAHULUAN 1.1 Latar Belakang ...1

1.2 Perumusan Masalah ...4

1.3 Tujuan Penelitian ...5

1.3.1 Tujuan Umum Penelitian ...5

1.3.2 Tujuan Khusus Penelitian ...5

1.4 Manfaat Penelitian ...5

1.5 Batasan Masalah ...6

1.6 Sistematika Penulisan ...6

BAB 2 TINJAUAN PUSTAKA 2.1 Pompa ...7

2.1.1 Karakteristik Pompa ...8

2.2 Kebisingan(Noise) ...11

2.2.1 Suara ...11

2.2.2 Kebisingan ...12

2.2.3 Jenis-Jenis Kebisingan ...13

2.2.4 Sinyal Noise ...16

2.2.5 Noise Contour ...17

2.3 Sumber Kebisingan Pompa ...18

2.4 Parameter Kebisingan ...19

2.5 Tingkat Kebisingan (Noise) / Sound Pressure Level ...20

2.6 Prosedur Dasar Mengendalikan Kebisingan ...22

2.7 Simulasi Ansys...23

2.7.1 Meshing ...23

2.7.2 Aplikasi Ansys Dalam Akustik ...24

2.7.3 Acoustic ACT (Application Customization Toolkit) Extension ...25

BAB 3 METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitian ...27

3.2 Bahan dan Alat Penelitian ...27

3.2.1 Bahan Penelitian ...27

3.2.2 Alat Penelitian ...29

3.3 Metode Penelitian ...31

3.4 Identifikasi Parameter ...31

3.5 Variabel yang Diamati ...32

3.6 Parameter Fluida ...32


(15)

iv

3.8 Kerangka Konsep Pemodelan Numerik ...40

3.9 Pelaksanaan Penelitian ...41

3.10 Set-up Komputasi...42

3.10.1 Tahap Pre-Processing ...42

3.10.2 Tahap Post-Processing ...45

3.10.3 Menjalankan Simulasi ...45

3.11 Diagram Alir Simulasi ...46

BAB 4 HASIL DAN PEMBAHASAN 4.1 Membangun Design Of Experimental (DOE) ...47

4.2 Membangun CAD ...47

4.3 Simulasi Uji Kebisingan (Noise) Pada Komponen Utama Pompa Baru ...49

4.3.1 Simulasi Uji Kebisingan (Noise) Pada Shaft ...49

4.3.2 Simulasi Uji Kebisingan (Noise) Pada Impeller ...50

4.3.3 Simulasi Uji Kebisingan (Noise) Pada Bearing ...50

4.4 Simulasi Uji Kebisingan (Noise) pada pompa Baru ...51

4.5 Simulasi Uji Kebisingan (Noise) Pada Komponen Utama Pompa Lama ...52

4.5.1 Simulasi Uji Kebisingan (Noise) Pada Shaft ...53

4.5.2 Simulasi Uji Kebisingan (Noise) Pada Impeller ...53

4.5.3 Simulasi Uji Kebisingan (Noise) Pada Bearing ...54

4.6 Simulasi Uji Kebisingan (Noise) pada pompa Lama ...54

4.7 Rekapitulasi Hasil Simulasi Noise Pompa Baru ...55

4.8 Rekapitulasi Hasil Simulasi Noise Pompa Lama ...56

4.9 Validasi Data ...57

4.9.1 Hasil Pengukuran Sound Pressure Level (SPL) Secara Eksperimental Pompa Baru ...57

4.9.2 Hasil Pengukuran Sound Pressure Level (SPL) Secara Eksperimental Pompa Lama ...59

4.10 Menghitung Persen Ralat Pada Pompa Baru ...60

4.10.1 % Ralat Pada Sumbu X ...60

4.10.2 % Ralat Pada Sumbu Y ...61

4.10.3 % Ralat Pada Sumbu -Y ...62

4.10.4 % Ralat Pada Sumbu Z ...63

4.11 Menghitung Persen Ralat Pada Pompa Lama ...60

4.11.1 % Ralat Pada Sumbu X ...60

4.11.2 % Ralat Pada Sumbu Y ...61

4.11.3 % Ralat Pada Sumbu -Y ...62

4.11.4 % Ralat Pada Sumbu Z ...63

BAB 5 KESIMPULAN DAN SARAN 5.1 Kesimpulan ...70

5.2 Saran ...71

DAFTAR PUSTAKA ...ix LAMPIRAN


(16)

v DAFTAR GAMBAR

Halaman

Gambar 1.1 Proses Kerja Pompa ...2

Gambar 2.1 Komponen Pompa Sentrifugal ...7

Gambar 2.2 Kurva Karakteristik Pompa Sentrifugal ...8

Gambar 2.3 Gelombang Suara Pada Material ...11

Gambar 2.4 Grafik Sinyal Noise ...17

Gambar 2.5 Contoh Noise Contour ...17

Gambar 2.6 Tampilan Meshing Pada Ansys ...24

Gambar 2.7 Simulasi Akustik Pada Speaker ...25

Gambar 2.8 Simulasi Sensor Parkir Mobil ...26

Gambar 3.1 Pompa Sentrifugal Dap Skala Rumah Tangga ...28

Gambar 3.2 Gambar Komponen-Komponen Pompa Dap Model Db-125a ....28

Gambar 3.3 Personal Computer (Pc) ...29

Gambar 3.4 Tampilan Software Autocad ...30

Gambar 3.5 Tampilan Software Ansys 15.0 ...30

Gambar 3.6 Instalasi Pipa ...33

Gambar 3.7 Instalasi Pompa ...35

Gambar 3.8 Impeler Pompa Dap ...36

Gambar 3.9 Poros Pompa Dap ...37

Gambar 3.10 Bearing ...39

Gambar 3.11 Kerangka Konsep Pemodelan Numerik ...40

Gambar 3.12 Diagram Alir Proses Pelaksanaan ...41

Gambar 3.13 Pembuatan Model Pompa Sentrifugal Dap Dengan Autocad ...42

Gambar 3.14 Computational Domain ...43

Gambar 3.15 Bentuk Mesh ...43

Gambar 3.16 Input Properties Domain ...44

Gambar 3.17 Input Tekanan Akustik ...44

Gambar 3.18 Input Data Sumber Gelombang Akustik ...45

Gambar 3.19 Input Kontrol Hamburan ...45

Gambar 3.20 Diagram Alir Simulasi ...46

Gambar 4.1 Bantalan (Bearing)...48

Gambar 4.2 Impeller...48

Gambar 4.3 Poros (Shaft) ...49

Gambar 4.4 Noise Contour Pada Shaft Pompa Baru ...50

Gambar 4.5 Noise Contour Pada Impeller Pompa Baru ...50

Gambar 4.6 Noise Contour Pada Bearing Pompa Baru ...51

Gambar 4.7 Noise Contour Pada Sumbu X Jarak Ukur 5Cm Pompa Baru ...52

Gambar 4.8 Noise Contour Pada Shaft Pompa Lama...53

Gambar 4.9 Noise Contour Pada Impeller Pompa Lama ...53

Gambar 4.10 Noise Contour Pada Bearing Pompa Lama ...54

Gambar 4.11 Noise Contour Pada Sumbu X Jarak Ukur 5Cm Pompa Lama ...55

Gambar 4.12 Perbandingan Grafik SPL dan Jarak Pada Pompa Baru (Simulasi) ...56

Gambar 4.13 Perbandingan Grafik SPL dan Jarak Pada Pompa Lama (Simulasi) ...57


(17)

vi Gambar 4.14 Perbandingan Grafik SPL dan Jarak Pada Pompa Baru

(eksperimental) ...58 Gambar 4.15 Perbandingan Grafik SPL dan Jarak Pada Pompa Baru


(18)

vii DAFTAR TABEL

Halaman

Tabel 1.1 Kriteria Kebutuhan Dalam Pemilihan Pompa ... 3

Tabel 2.1 Contoh SPL berdasarkan sumbernya ... 27

Tabel 3.1 Parameter fluida ... 32

Tabel 3.2 Design Of Experiment (DOE)... 35

Tabel 4.1 Parameter Design Of Experimental (DOE) ... 47

Tabel 4.2 Nilai SPL dari hasil simulasi Pompa Baru ... 55

Tabel 4.3 Nilai SPL dari hasil simulasi Pompa Lama ... 56

Tabel 4.4 Hasil Pengukuran Kebisingan Pompa Baru Secara Eksperimental ... 58

Tabel 4.5 Hasil Pengukuran Kebisingan Pompa Lama Secara Eksperimental ... 59

Tabel 4.6 Persen Ralat Pompa Baru ... 62


(19)

viii DAFTAR NOTASI

Simbol Satuan

c Kecepatan suara m/s

gc Faktor konversi satuan N/s2

γ Specific heat ratio

R Konstanta gas spesifik

T Temperatur absolut K

N Kekuatan noise

K Konstanta Boltzmann J/K

λ Panjang gelombang m

f Frekuensi Hz

T Periode s

k Jumlah gelombang

Lp Sound pressure level dB

Lw Sound power level dB

P Sound pressure Pa

pref Tekanan referensi Pa

W Sound power Watt


(20)

36 ABSTRACT

The pump is a fluid machine which is used as a means of fluid transport water from one place to another by using mechanical energy that flow through the fluid. Water plays an important role in human survival, if there is damage to the pump could potentially interfere with the activity of the human life. Therefore it is very necessary to keep the pump can operate reliably with high performance. Groundwater has physical properties different in every place that affect the birth of vibration which then cause noise pump that will result in the performance of a centrifugal pump. By measuring the noise at the pump can know the type of failure that occurred. Thus we can determine the condition of the pump and treatment should be done. The purpose of this research is a major component of the pump identify, old and new conditions that cause noise is most dominant in a way to simulate the three main components of the pump and the pump intact using FEM software also to show the noise contour. Simulation varied with distance measuring 5, 10, 15 and 20 cm on the axis X, -X, Y, -Y and Z. From the simulation results we can conclude that the pump impeller is a component that raises the highest noise is 79.052 dB (new pump) and 88.425 dB (old pump) and noise values obtained in the new pump is; (distance measuring 5cm axes X, Y, -Y and Z = 73.2; 97.7; 96.3; 79.5), (distance measuring 10cm X axis, Y, -Y and Z = 72.2; 94 , 6; 93.7; 73.5), (distance measuring 15cm X axis, Y, -Y and Z = 70.12; 91.2; 89.2; 72.5), (distance measuring 20cm X axis, Y, -Y and Z = 63.3; 86.0; 85.4; 64.2), respectively in units of dB (decibel) whereas in the old pump is; (distance measuring 5cm axes X, Y, - Y and Z = 84.222; 99.25; 98.7; 81.5), (distance measuring 10cm X axis, Y, -Y and Z = 80.906; 95.6; 96.3; 74.327), (distance measuring 15cm axis X, Y, -Y and Z = 76.032; 93.7; 92.2; 73.8), (distance measuring 20cm X axis, Y, -Y and Z = 75.094; 87.5; 86.6; 68.504 ), respectively in units of dB (decibels).

Keywords: Mechanical energy, noise, centrifugal pumps, simulation, decibel, frequency


(21)

37 ABSTRAK

Pompa adalah mesin fluida yang digunakan sebagai alat transportasi fluida salah satunya air dari suatu tempat ke tempat lain dengan menggunakan energi mekanik yang mengaliri fluida. Air sangat berperan dalam kelangsungan hidup manusia, jika terjadi kerusakan pada pompa secara potensial dapat mengganggu aktivitas kehidupan manusia tersebut. Oleh sebab itu sangat perlu untuk menjaga agar pompa dapat beroperasi handal dengan performansi yang tinggi. Air tanah memiliki sifat fisik yang berbeda-beda di setiap tempat yang mempengaruhi lahirnya getaran yang kemudian menimbulkan kebisingan (noise) pompa yang akan berakibat pada kinerja pompa sentrifugal. Dengan mengukur noise pada pompa dapat diketahui jenis kegagalan yang terjadi. Dengan demikian kita dapat mengetahui kondisi pompa dan perawatan yang harus dilakukan. Adapun tujuan penelitian ini adalah mengidentifikas komponen utama pompa kondisi lama dan baru yang menimbulkan kebisingan (noise) paling dominan dengan cara melakukan simulasi pada tiga komponen utama pompa dan pada pompa secara utuh menggunakan perangkat lunak FEM serta untuk menampilakn kontur kebisingannya. Simulasi divariasikan dengan jarak ukur 5, 10, 15 dan 20 cm pada sumbu X, -X, Y, -Y dan Z. Dari hasil simulasi dapat disimpulkan bahwa impeller adalah komponen pompa yang menimbulkan kebisingan paling tinggi yaitu 79,052 dB (pompa baru) dan 88,425 dB (pompa lama) dan diperoleh nilai kebisingan pada pompa baru adalah; (jarak ukur 5cm sumbu X, Y, -Y dan Z = 73,2 ; 97,7 ; 96,3 ; 79,5), (jarak ukur 10cm sumbu X, Y, -Y dan Z = 72,2 ; 94,6 ; 93,7 ; 73,5), (jarak ukur 15cm sumbu X, Y, -Y dan Z = 70,12 ; 91,2 ; 89,2 ; 72,5), (jarak ukur 20cm sumbu X, Y, -Y dan Z = 63,3 ; 86,0 ; 85,4 ; 64,2), secara berturut-turut dalam satuan dB(desibel) sedangkan pada pompa lama adalah ;(jarak ukur 5cm sumbu X, Y, -Y dan Z = 84,222 ; 99,25 ; 98,7 ; 81,5), (jarak ukur 10cm sumbu X, Y, -Y dan Z = 80,906 ; 95,6 ; 96,3 ; 74,327), (jarak ukur 15cm sumbu X, Y, -Y dan Z = 76,032 ; 93,7 ; 92,2 ; 73,8), (jarak ukur 20cm sumbu X, Y, -Y dan Z = 75,094 ; 87,5 ; 86,6 ; 68,504), secara berturut-turut dalam satuan dB(desibel).

Kata kunci: Energi mekanik, kebisingan, pompa sentrifugal, simulasi, desibel, frekuensi


(22)

1 BAB I

PENDAHULUAN

1.1 Latar Belakang

Pompa adalah mesin fluida yang digunakan sebagai alat transportasi fluida dari suatu tempat ke tempat lain dengan menggunakan energi mekanik yang mengaliri fluida. Tambahan energi mekanik ini digunakan untuk meningkatkan kecepatan alir (v), tekanan (P) dan elevasi fluida (h) serta untuk mengatasi tahanan-tahanan aliran sepanjang instalasi pipa. Fluida yang dipindahkan dengan pompa adalah fluida yang tidak mampu mampat (incompressible fluids) dan sepanjang proses transportasinya densitas tidak berubah banyak [15]. Adapun parameter-parameter yang mempengaruhi kerja pompa dapat dilihat pada gambar 1.1.

Masukan Putaran (n)=rpm Daya (P) = Watt

Faktor Terkontrol

Debit (Q) = m3/s Tekanan (p) = N/m2 Head (h) = m

Kekentalan (v) = m2/s

ΔP = f (n, T, ρ) ΔP = f (n, T, ρ)

Keluaran

Tekanan (P) = N/m2 Head (h) = m Debit (Q) = m3 Kecepatan (v) = m/s


(23)

2 Pompa sentrifugal bekerja dengan prinsip putaran impeller sebagai elemen pemindah fluida cair yang digerakkan oleh suatu penggerak yaitu motor. Cairan akan berputar akibat dorongan sudu-sudu pada impeller yang memberikan gaya sentrifugal sehingga cairan mengalir dari celah-celah impeller dan keluar melalui celah sudu-sudu, dan meninggalkan impeller dengan kecepatan tinggi.

Cairan dengan kecepatan tinggi ini lalu melewati saluran yang penampangnya makin membesar sehingga terjadi perubahan head kecepatan menjadi head tekanan. Ketika mekanisasi impeller mendesak cairan, ruang diantara sudu-sudu menjadi vakum sehingga cairan terhisap masuk dan terjadi proses pengisapan [15]. Proses kerja pompa sentrifugal ditunjukan pada Gambar 1.2

Gambar 1.1 Proses Kerja Pompa [15]

Konstruksi yang sederhana dan mudahnya pengoperasian pompa sentrifugal menjadi salah satu dasar dalam penentuan pompa, sehingga jenis pompa ini banyak dipilih dan diaplikasikan dalam pendistribusian air, terutama digunakan untuk memenuhi kebutuhan air rumah tangga. Tabel 1.1 berikut menunjukkan beberapa kriteria yang dibutuhkan masyarakat dalam pemilihan pompa untuk penggunaan di rumah tangga.


(24)

3 Tabel 1.1 Kriteria Kebutuhan Dalam Pemilihan Pompa

Kebutuhan Prioritas

Operasi (otomatis) 3

Debit air(Q) 4

Dimensi 3

Perawatan yang mudah 4

Kehandalan(reliability) 4

Keterangan :

1 = Tidakperlu 2 = Pelengkap 3 = Perlu

4 = Sangat perlu

Mengingat air sangat berperan dalam kelangsungan hidup manusia, jika terjadi kerusakan pada pompa secara potensial dapat mengganggu aktivitas kehidupan manusia tersebut. Oleh sebab itu sangat perlu untuk menjaga agar pompa ini dapat beroperasi handal dengan performansi yang tinggi. Salah satu aplikasi pompa sentrifugal yaitu pendistribusian air. Pompa sentrifugal yang banyak digunakan di masyarakat adalah pompa sentrifugal tanpa kopling. Pompa ini digunakan sebagai penyuplai dan pendistribusian air. Air yang di pompa biasanya adalah air tanah ataupun air pam. Air tanah yang dipompa memiliki sifat fisik berbeda-beda yang mempengaruhi kinerja pompa. Sifat fisik air tanah antara lain:

1. Kekentalan 2. Suhu 3. Masa jenis


(25)

4 Sifat fisik air ini mempengaruhi lahirnya getaran yang akan berakibat pada kinerja pompa. Selain itu struktur kimia air dapat menyebabkan terjadinya korosi pada komponen-komponen pompa. Dengan demikian, untuk mencegah kegagalan pompa yang mengakibatkan berkurangnya kinerja pompa, perawatan harus dilakukan secara berkesinambungan. Gejala-gejala kegagalan pompa dapat diidentifikasi melalui peningkatan bunyi ketika pompa di operasikan.

Dalam skripsi ini akan dikaji tentang gejala-gejala yang menyebabkan kerusakan pompa. Untuk mendapatkan strategi maintenance yang tepat, sehingga pompa terlindung dari bahaya kerusakan. Kerusakan-kerusakan pompa yang biasa terjadi disebabkan oleh kavitasi, misalignment, unbalance, coocked bearing, dan kerusakan lainnya sehingga kinerja pompa terganggu.

1.2. Perumusan Masalah

Air tanah memiliki sifat fisik yang berbeda-beda di setiap tempat. Sifat fisik ini mempengaruhi lahirnya getaran yang kemudian menimbulkan kebisingan (noise) pompa yang akan berakibat pada kinerja pompa sentrifugal. Selain itu unsur-unsur kimia atau benda-benda kecil yang terhisap juga mempengaruhi kinerja pompa sentrifugal. Penyebab lain yang menyebabkan kerusakan pompa sentrifugal skala rumah tangga adalah tidak profesionalnya teknisi yang memasang pompa (misalignment), konstruksi yang tidak sesuai dengan performansi kerja pompa (instalasi pipa terlalu panjang), kavitasi dan unbalance

yang kemudian mengakibatkan kegagalan komponen–komponen pompa diantaranya impeler, poros, bearing, dan seal.

Dari berbagai jenis kegagalan komponen pompa tersebut, maka akan menyebabkan terjadinya noise. Noise yang dihasilkan pada setiap kegagalan akan berbeda, dengan demikian dapat dilakukan identifikasi kegagalan dengan cara menganalisa noise yang terjadi ketika pompa dioperasikan. Dengan mengukur noise pada pompa dapat diketahui komponen dan jenis kegagalan yang terjadi. Dengan demikian kita dapat mengetahui kondisi pompa dan perawatan yang akan dilakukan pada pompa sentrifugal.


(26)

5 1.3. Tujuan Penelitian

1.3.1 Tujuan Umum Penelitian

Tujuan umum dari penelitian ini adalah sebagai berikut:

1. Mengidentifikas komponen utama pompa yang menimbulkan kebisingan (noise) paling dominan.

2. Mengidentifikasi dan mmbuktikan fenomena kerusakan yang terjadi pada pompa sentrifugal skala rumah tangga dengan cara pengujian secara komputasional.

3. Mendapatkan pola pemeliharaan yang sesuai pada pompa sentrifugal skala rumah tangga sehingga umur pakai pompa dapat bertahan sesuai spesifikasi yang ditetapkan pabrik.

1.3.2Tujuan Khusus Penelitian

Tujuan khusus dari penelitian ini adalah sebagai berikut:

1. Membangun model komputasional dari pompa sentrifugal kondisi lama dan baru kemudian melakukan simulasi pada tiga(3) komponen utamanya menggunakan perangkat lunak FEM untuk mendapatkan komponen mana yang menghasilkan kebisingan (noise) paling tinggi serta untuk menampilkan kontur kebisingannya

2. Melakukan simulasi pada pompa lama dan baru secara keseluruhan untuk mendapatkan nilai kebisingannya (noise) serta untuk menampilkan bagaimana kontur kebisingan (noise) dari pompa.

3. Melakukan validasi dengan membandingkan hasil komputasional dengan eksperimental pada pompa lama dan baru.

4. Menghitung persen ralat dari hasil pengukuran kebisingan secara eksperimental dengan hasil simulasi pada pompa lama dan baru.

1.4. Manfaat Penelitian

Penelitian ini adalah salah satu upaya pihak perguruan tinggi, dalam memberi informasi kepada masyarakat, dunia industri dan dunia pendidikan tentang teknik untuk melakukan analisa kegagalan komponen-komponen pada


(27)

6 pompa sentrifugal skala rumah tangga dengan mengidentifikasi peningkatan kebisingan yang terjadi, sehingga mendapatkan metode pemeliharaan yang tepat untuk mendapatkan umur pompa yang sesuai standar pabrik. Oleh karena itu, maka penelitian ini juga bermanfaat sebagai referensi untuk masyarakat dan

engineer maintenance dalam melakukan identifikasi kondisi pompa sentrifugal

secara nondestructive, sehingga pelaku maintenance dapat merawat pompa secara berkelanjutan.

1.5 Batasan Masalah

Adapun batasan-batasan masalah pada penelitian ini adalah sebagai berikut:

1. Simulasi uji kebisingan (noise) dilakukan pada pompa sentrifugal DAP skala rumah tangga kondisi lama dan baru.

2. Simulasi uji kebisingan (noise) pompa dilakukan pada jarak 5, 10, 15 dan 20 cm.

3. Simulasi uji kebisingan (noise) pompa dilakukan pada sumbu X, Y, -Y dan Z.

4. Simulasi dilakukan pada keadaan steady.

1.6 Sistematika Penulisan

Pada bab 1 membahas tentang latar belakang, perumusan masalah dan tujuan penelitian ini. Pada bab 2 adalah tinjauan pustaka, yang membahas tentang kebisingan (noise) pada pompa dan metode pengujian secara eksperimental dan simulasi numerik. Bab 3 adalah Metode Penelitian. Bab 4 merupakan Hasil dan Pembahasan. Bab 5 Kesimpulan dan Saran dan Bab terakhir yaitu berisikan Daftar Pustaka yang digunakan dalam Penelitian ini.


(28)

7 BAB 2

TINJAUAN PUSTAKA 2.1Pompa

Pompa adalah suatu alat yang digunakan untuk memindahkan suatu fluida dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut [15]. Adapun konstruksi pompa terdiri dari berbagai komponen, seperti pada gambar 2.1.

Gambar 2.1 Komponen Pompa Sentrifugal

a) Stuffing Box berfungsi untuk mencegah kebocoran pada daerah dimana poros pompa menembus casing.

b) Packing digunakan untuk mencegah dan mengurangi bocoran cairan dari casing pompa melalui poros. Biasanya terbuat dari asbes atau teflon.

c) Shaft/poros berfungsi untuk meneruskan momen puntir dari penggerak selama beroperasi dan tempat kedudukan impeller dan bagian-bagian berputar lainnya. d) Shaft sleeve berfungsi untuk melindungi poros dari erosi, korosi dan keausan pada

stuffing box.

e) Vane sudu dari impeller sebagai tempat berlalunya cairan pada impeller.

f) Casing merupakan bagian paling luar dari pompa yang berfungsi sebagai pelindung elemen yang berputar.


(29)

8 h) Impeller berfungsi untuk mengubah energi mekanis dari pompa menjadi energi kecepatan pada cairan yang dipompakan secara kontinyu, sehingga cairan pada sisi isap secara terus menerus akan masuk mengisi kekosongan akibat perpindahan dari cairan yang masuk sebelumnya.

i) Casing wear ring berfungsi untuk memperkecil kebocoran cairan yang melewati bagian depan impeller maupun bagian belakang impeller, dengan cara memperkecil celah antara casing dengan impeller.

j) Bearing (bantalan) berfungsi untuk menumpu dan menahan beban dari poros agar dapat berputar, baik berupa beban radial maupun beban axial. Bearing juga memungkinkan poros untuk dapat berputar dengan lancar dan tetap pada tempatnya, sehingga kerugian gesek menjadi kecil.

k) Discharge nozzle merupakan nosel pada sisi keluar [15].

2.1.1 Karakteristik Pompa

Karakteristik pompa adalah prestasi pompa dalam bentuk grafik hubungan antara head (H), daya (N) dan efisiensi (η) terhadap debit (Q) seperti terlihat pada gambar 2.2.

Gambar 2.2 Kurva Karakteristik Pompa Sentrifugal (google.com)

Head pompa adalah energi per satuan berat yang harus disediakan untuk mengalirkan sejumlah zat cair yang direncanakan sesuai dengan kondisi instalasi


(30)

9 pompa, atau tekanan untuk mengalirkan sejumlah zat cair yang dinyatakan dalam satuan panjang [11].

Menurut Bernoully ada tiga macam energi (head) fluida yaitu energi tekanan, energi kinetik dan energi potensial. Hal ini dinyatakan pada persamaan (2.1) sebagai berikut :

Etekan = Ek + Ep ...(2.1)

Energi tekanan dihasilkan oleh impeller yang berputar. Dengan demikian jika terjadi kerugian tekanan maka disebabkan oleh kondisi impeler yang kurang baik atau terjadi fenomena kavitasi. Hal ini dapat dirumuskan sebagai berikut:

Etekan = Ek + Ep ...(2.2)

EPutaran Impeler - Ebunyi =Ek + Ep ...(2.3)

Ebunyi = EPutaran Impeler - Ek + Ep ...(2.4)

Pada pompa sentrifugal dengan skala rumah tangga menggunakan penggerak motor listrik tanpa kopling. Dengan demikian untuk menghitung energi pada impeller pompa dapat menggunakan persamaan berikut :

EPutaran Impeler = � ... (2.5)

Keterangan :

= Daya motor = Efisiensi transmisi

= Faktor koreksi cadangan daya (0,1 – 0,2)

Untuk menghitung energi kinetik dan energi potensial dengan persamaan berikut:

Ek = m ... (2.6) Ep = mgh ... (2.7)


(31)

10 Keterangan :

m = Massa aliran fluida v = Kecepatan aliran fluida h = Tinggi head

g = Percepatan gravitasi

dengan mensubstitusikan persamaan (2.5), (2.6) dan (2.7) ke persamaan (2.4), maka diperoleh persamaan berikut:

Ebunyi = - m + mgh ... (2.8)

Untuk menghitung daya bunyi yang dihasilkan oleh pompa dapat digunakan persamaan sebagai berikut:

P = ... (2.9) Untuk menghitung Intensitas bunyi dapat digunakan persamaan sebagai berikut:

I = � ... (2.10) Keterangan :

I = Intensitas bunyi P = Daya bunyi

A = Luas medium rambat bunyi

Tekanan bunyi dapat dirumuskan sebagai berikut :

p = √ ... 2.11) Keterangan :

p = Tekanan bunyi


(32)

11 c = Cepat rambat bunyi pada medium

I = Intensitas bunyi

Sound pressure level dapat dihitung dengan persamaan sebagai berikut:

SPL = 20 Log ... (2.12) [7]

Keterangan :

p = Tekanan bunyi

po = Tekanan bunyi reference

2.2 Kebisingan (Noise) 2.2.1 Suara

Suara didefinisikan yaitu sebagai serangkain gelombang yang merambat dari suara sumber getar sebagai akibat dari perubahan kerapatan dan juga tekanan pada udara. Gelombang suara pada fluida kebanyakan dihasilkan melalui permukaan zat padat yang bergetar di dalam fluida tersebut seperti pada Gambar 2.3.

Gambar 2.3 Gelombang suara pada material.

Pada Gambar 2.3, permukaan benda yang bergetar mengakibatkan fluida yang berdekatan dengan permukaan tersebut terkompresi. Kompresi ini


(33)

12 mengakibatkan efek menjauh dari permukaan yang bergetar. Efek ini disebut dengan gelombang suara, gelombang suara tersebut akan bergerak menjauhi permukaan yang bergetar dengan kecepatan yang bervariasi bergantung terhadap material yang dilalui. Untuk gas ideal, kecepatan suara adalah fungsi dari tempertur absolut.

c = ... (2.13) Dimana:

gc = Fator konversi satuan = 1 kgm/N-s2 = Spesfic heat ratio = cp/cv

= Konstanta gas spesifik = 287 J/kg-K T = Temperatur absolut ( K )

Suara yang dapat didengar oleh manusia hanya pada rentang frekuensi tertentu yang dapat menimbulkan respon serta tidak mengganggu fungsi dari indra pendengaran. Rentang frekuensi yang dapat didengar oleh manusia berkisar antara 20–20.000 Hz. Suara berdasakan frekuensinya dapat dikelompokkan menjadi beberapa kategori sebagai berikut:

1. Infrasonik: frekuensi < 20 Hz

2. Audiosonik: frekuensi 20-20.000 Hz 3. Supersonik: frekuensi >20.000 Hz

2.2.2 Kebisingan

Kebisingan atau noise adalah bunyi atau suara yang tidak dikehendaki dan dapat mengganggu kesehatandan kenyamanan lingkungan yang dinyatakan dalam satuan decibel (dB). Seiring berkembangnya waktu, kebanyakan dari mesin mesin produksi, mesin–mesin transportasi, dan segala sesuatu yang dapat meningkatkan taraf hidup manusia selalu berdampingan dengan masalah kebisingan. Kebisingan dapat merambat melalui banyak jalur yang disebut sebagai path of noise [7].


(34)

13 Sumber noise dapat dikelompokkan dalam tiga kategori:

1. Sumber noise intrinsic yang muncul dari fluktuasi acak di dalam suatu sistem fisik seperti thermal dan shot noise.

2. Sumber noise buatan manusia seperti motor, switch, elektronika digital.

3. Noise karena gangguan alamiah seperti petir dan bintik matahari.

2.2.3 Jenis–Jenis Kebisingan (Noise)

Noise dapat dikelompokkan dalam dua jenis, yaitu:

a. Correlated noise: Hubungan antara sinyal dan noise masuk dalam kategori

ini. Karena itu, correlated noise hanya muncul saat ada sinyal.

b. Uncorrelated noise: Noise yang dapat muncul kapanpun, saat terdapat sinyal

maupun tidak ada sinyal. Uncorrelated noise muncul tanpa memperhatikan adanya sinyal atau tidak.

Noise dalam kategori ini dapat dibagi lagi menjadi dua kategori umum,

yaitu:

1. Eksternal noise: Merupakan noise yang dihasilkan dari luar alat atau sirkuit.

Noise tidak disebabkan oleh komponen alat dalam sistem komunikasi tersebut.

Ada 3 sumber utama noise eksternal yaitu:

a. Atmospheric noise: gangguan elektris yang terjadi secara alami, disebabkan

oleh hal–hal yang berkaitan dengan atmosfer bumi. Noise atmosfer biasanya disebut juga static electricity. Noise jenis ini bersumber dari kondisi elektris yang bersifat alami, seperti kilat dan halilintar. Static electricity

berbentuk impuls yang menyebar ke dalam energi sepanjang lebar frekuensi

b. Ekstraterrestrial noise: Noise ini terdiri dari sinyal elektris yang dihasilkan

dari luar atmosfer bumi. Terkadang disebut juga deep-space noise. Noise

ekstra terrestrial bisa disebabkan oleh Milky Way, galaksi yang lain, dan matahari.


(35)

14

Noise ini dibagi menjadi 2 kategori, yaitu solar dan cosmic noise:

1. Solar noise: Solar noise dihasilkan langsung dari panas matahari. Ada

dua bagian solar noise, yaitu saat kondisi dimana intensitas radiasi konstan dan tinggi, gangguan muncul karena aktivitas sun-spot dan solar

flare-ups. Besar gangguan yang jarang terjadi ini (bersifat sporadis)

bergantung pada aktivitas sun spot mengikuti pola perputaran yang berulang setiap 11 tahun.

2. Cosmic noise: Cosmic noise didistribusikan secara continue di sepanjang

galaksi. Intensitas noise cenderung kecil karena sumber noise galaksi terletak lebih jauh dari matahari. Cosmic noise sering juga disebut

black-body noise dan didistribusikan secara merata di seluruh angkasa.

c. Man-made noise: Secara sederhana dapat diartikan sebagai kebisingn

(noise) yang dihasilkan manusia. Sumber utama dari kebisingan (noise) ini

adalah dari mekanisme spark producing, komutator dalam, sistem pembakaran kendaraan bermotor, alternator, dan juga akibat aktivitas peralihan alat oleh manusia (switching equipment). Misalnya, setiap saat di rumah, penghuni sering mematikan dan menyalakan lampu melalui saklar, dengan begitu otomatis arus listrik dapat tiba-tiba muncul ataupun terhenti. Tegangan dan arus listrik berubah secara mendadak, perubahan ini memuat lebar frekuensi yang cukup besar.

Beberapa frekuensi itu memancar/menyebar dari saklar atau listrik rumah, yang bertindak sebagai miniatur penghantar dan antena. Noise karena aktivitas manusia ini disebut juga impulse noise, karena bersumber dari aktivitas on/off yang bersifat mendadak. Spektrum noise cenderung besar dan lebar frekuensi bias sampai 10 MHz. Kebisingan (Noise) jenis ini lebih sering terjadi pada daerah metropolitan dan area industri yang padat penduduknya, karena itu disebut juga industrial noise.

2. Internal noise: Internal noise juga menjadi faktor yang penting dalam sistem

komunikasi. Internal noise adalah gangguan elektris yang dihasilkan alat atau sirkuit. Noise muncul berasal dari komponen alat dalam sistem komunikasi bersangkutan. Ada 3 jenis utama noise yang dihasilkan secara internal, yaitu:


(36)

15

a. Thermal noise: Thermal noise ini berhubungan dengan

perpindahan elektron yang cepat dan juga secara acak dalam alat konduktor akibat digitasi thermal. Perpindahan yang bersifat random ini pertama kali ditemukan oleh ahli tumbuh-tumbuhan yang bernama Robert Brown, yang mengamati perpindahan partikel alami dalam penyerbukan biji padi. Perpindahan random elektron pertama kali dikenal tahun 1927 oleh JB. Johnson di Bell Telephone Laboratories. Johnson membuktikan bahwa kekuatan thermal noise proporsional dengan bandwidth dan temperatur absolut.

Secara matematis, kekuatan noise adalah:

... (2.14)

Dimana:

N = Kekuatan noise (noise power)

K = Boltzmann’s proportionality constant (1.38×10-23 J/K) T = Temperatur absolute

B = Bandwidth

b. Shot noise: Noise jenis ini muncul karena penyampaian sinyal yang tidak

beraturan pada keluaran (output) alat elektronik yang digunakan, seperti pada transistor dua kutub. Pada alat elektronik, jumlah partikel pembawa energi (elektron) yang terbatas menghasilkan fluktuasi pada arus elektrik konduktor. Shot noise juga bisa terjadi pada alat optik, akibat keterbatasan foton pada alat optik. Pada shot noise, penyampaian sinyal tidak bergerak secara kontinu dan beraturan, tapi bergerak berdasarkan garis edar yang acak. Karena itu, gangguan yang dihasilkan acak dan berlapis pada sinyal yang ada. Ketika shot noise semakin kuat, suara yang ditimbulkan noise ini mirip dengan butir logam yang jatuh di atas genteng timah. Shot noise tidak berlaku pada kawat logam, karena hubungan antar elektron pada kawat logam dapat menghilangkan fluktuasi acak. Shot

noise disebut juga transistor noise dan saling melengkapi


(37)

16 pada kutub positif dan kutub negatif tabung pesawat vakum (vacuum-tube

amplifier) dan dideskripsikan secara matematis oleh W. Schottky tahun

1918.

c. Transit-time noise: Arus sinyal yang dibawa melintasi sistem masukan dan

keluaran pada alat elektronik, (misalnya dari penyampai (emitter) ke pengumpul (collector) pada transistor) menghasilkan noise yang tidak beraturan dan bervariasi. Inilah yang disebut dengan transit-time noise.

Transit-time noise terjadi pada frekuensi tinggi ketika sinyal bergerak

melintasi semikonduktor dan membutuhkan waktu yang cukup banyak untuk satu perputaran sinyal. Transit time noise pada transistor ditentukan oleh mobilitas data yang dibawa, bias tegangan, dan konstruksi transistor. Jika perjalanan data tertunda dengan frekuensi yang tinggi saat perlintasan semikonduktor, noise akan lebih banyak dibandingkan dengan sinyal aslinya.

2.2.4 Sinyal Noise

Untuk suatu peristiwa pentransmisian data, sinyal yang diterima akan berisikan sinyal–sinyal yang ditransmisikan, dimodifikasi oleh berbagai distorsi yang terjadi melalui sistem transmisi, ditambah sinyal–sinyal tambahan yang tidak diinginkan yang diselipkan di suatu tempat diantara transmisi dan penerimaan. Sinyal–sinyal tambahan yang tidak diharapkan tersebut disebut noise. Noise

merupakan faktor utama yang membatasi performansi sistem komunikasi. Secara umum, grafik sinyal noise diperlihatkan seperti pada Gambar 2.4.


(38)

17 Gambar 2.4 Grafik sinyal noise (google.com)

2.2.5 Noise Contour

Sebuah noise contour merupakan distribusi dari sumber kebisingan yang di gambarkan dalam bentuk garis yang bersambung dan tidak dapat bertemu atau memotong garis kontur lainnya dan tidak pula dapat bercabang menjadi garis kontur yang lain. Kontur kebisingan digunakan untuk menentukan absorber bunyi sebagai bagian dari pengandalian kebisingan. Seperti Gambar 2.5 contoh noise contour. [16]

Gambar 2.5 Contoh Noise contour


(39)

18 2.3Sumber Kebisingan Pompa

Pada pompa sentrifugal, terdapat dua sumber kebisingan, yaitu : 1. Sumber kebisingan mekanikal

Sumber mekanik umum yang dapat menghasilkan noise termasuk membuat komponen pompa bergetar dikarenakan oleh variasi tekanan yang dihasilkan oleh cairan atau udara. Impeller atau seal rusak, bantalan yang rusak, bergetarnya dinding pipa dan rotor tidak seimbang adalah contoh sumber mekanik.

Pada pompa sentrifugal, instalasi yang tidak tepat pada kopling sering menyebabkan kebisingan mesin pada 2 kali kecepatan pompa (misalignment). Jika kecepatan pompa dekat dengan kecepatan kritis lateral, kebisingan dapat dihasilkan oleh getaran yang tinggi yang dihasilkan dari ketidakseimbangan atau keausan bantalan, seal, atau impeller. Jika terjadi keausan,itu dapat ditandai dengan tingkat kebisingan yang tinggi. Suara bising dapat dihasilkan oleh motor dan pasak poros. Kerusakan elemen ball bearing menghasilkan suara kebisingan tinggi yang dipengaruhi oleh geometri bearing dan kecepatannya.

2. Sumber kebisingan fluida

Fluktuasi tekanan fluida dihasilkan oleh gerakan cairan. Kebisingan pada fluida dapat dihasilkan oleh turbulensi, kavitasi, tumbukan air, pemisahan aliran dan interaksi impeller pada saat memotong air. Jika frekuensi yang dihasilkan mempengaruhi setiap bagian dari struktur termasuk pipa atau pompa pada vibrasi mekanikal, maka suara bising akan terpancar ke lingkungan.

Jenis sumber kebisingan yang terjadi umumnya pada pompa sentrifugal. a. Frekuensi diskrit yang dihasilkan oleh impeller pompa sama dengan

frekuensi kipas, dan kelipatan.

b. Gelombang induksi aliran disebabkan oleh turbulensi seperti restriksi aliran dan percabangan dalam sistem perpipaan.


(40)

19 d. Aliran air yang terputus-putus disebabkan oleh kavitasi dan tumbukan

air.

Berbagai pola aliran sekunder yang menghasilkan fluktuasi tekanan yang mungkin terjadi dalam pompa sentrifugal, yaitu :

1. resirkulasi (aliran sekunder) 2. sirkulasi

3. kebocoran 4. Fluktuasi aliran 5. vortisitas 6. turbulensi 7. kavitasi

2.4Parameter Kebisingan

Kebisingan memiliki banyak parameter yang bisa dijadikan sebagai acuan dalam menentukan skala kebisingan tersebut sebagaimana banyaknya parameter untuk menentukan bunyi. Namun, parameter yang sering dijadikan acuan dalam mengukur suatu kebisingan untuk mempersempit pembahasan biasanya di tentukan oleh parameter berikut:

a. Frekuensi

Gelombang gerak sendiri memiliki banyak kriteria yang dapat dijabarkan secara terperinci diantaranya adalah frekuensi. Frekuensi didefenisikan sebagai jumlah getaran ataupun gerakan yang terjadi dalam satu satuan waktu. Frekuensi dapat di modelkan dengan persamaan berikut:

f = 1/T ... (2.15)

b. Panjang gelombang

Panjang gelombang ( ) dari gelombang suara merupakan parameter yang sangat penting didalam mencari tau pola dari gelombang suara. jika dilihat dari gambaran gelombang, maka panjang gelombang adalah jarak antara dua puncak gelombang. Panjang gelombang dapat didefenisikan sebagai berikut:


(41)

20 = ... (2.16)

c. Jumlah Gelombang

Jumlah gelombang merupakan banyaknya gelombang suara yang terjadi selama perambatan gelombang. Jumlah gelombang dirumuskan sebagai berikut:

k = = ... (2.17)

d. Sound Pressure

Parameter yang dijadikan sebagai bagian dari gelombang suara adalah

sound pressure dan sound power. Sound presure merupakan fluktuasi dari

tekanan udara. Ketika suatu sumber bunyi menghasilkan bunyi, maka buyi tersebut akan merambat melalui medium udara yang ada disekitarnya. Ketika terjadi perambatan, maka terjadi perubahan tekanan atmosfir beberapa saat. Sesuatu yang merupakan perubahan tekanan udara sebagai indikasi dari adanya perambatan bunyi inilah yang di sebut dengan sound

pressure.

e. Sound Power

Sedangkan sound power merupakan sejumlah daya yang dapat di ukur dihasilkan oleh radiasi sumber bunyi yang menyebar disekitar udara. Secara matemetik, sound power dapat di rumuskan sebagai berikut:

Ws = (4 r2) Imax (watt) ... (2.18)

2.5Tingkat Kebisingan / Sound Pressure Level (SPL)

Untuk mempermudah penentuan nilai kebisingan, maka ada metode yang digunakan dengan menggunakan sekala level atau tingkat kebisingan suara dalam satuan decibel (dB) yang dibagi menjadi dua kategori yakni sound pressure level

dan sound power level.

a. Sound Power Level


(42)

21

Lw = 10 log

(dB)... (2.19)

Dimana:

W = Sound power

Wreff = Sound power referensi dengan standar 10-12 watt

b. Sound Pressure Level (SPL)

Hampir setiap pemikiran umum mendefenisikan kata decibel (dB) dengan mengaitkan terhadap sound pressure level. Hal seperti ini telah menjadi suatu kesimpulan tersendiri bahwa apabila berbicara tentang skala decibel

berarti merupakan suatu hasil perhitungan dari sound pressure level. Secara matematis sound pressure level dapat di rumuskan sebagai berikut:

SPL = Lp = 10 log [� ] = 20 log � ... (2.20)

Dimana:

P = Tekanan yang terjadi (Prms ) untuk aliran fluida

Preff = Tekanan referensi yang distandarisasi untuk propagasi pada air Borne = 2x10-5 N/m2 = 20 µPa.

Berikut ini adalah sound level pressure yang dihasilkan berdasarkan sumbernya seperti pada tabel 2.1.

Tabel 2.1 Contoh SPL berdasarkan sumbernya [17] Sound Source (Noise)

Examples With Distance

Sound Pressure Level (SPL) = dB

Jet aircraft, 50 m away 140

Threshold of pain 130

Threshold of discomfort 120


(43)

22

Disco, 1 m from speaker 100

Diesel truck, 10 m away 90

Kerbside of busy road, 5 m 80

Quite library 40

Average home 50

Quite bedroom at night 30

2.6Prosedur Dasar Mengendalikan Kebisingan

Untuk menentukan perlakuan pengendalian kebisingan yang tepat untuk permasalahan kebisingan pada impeller terdapat beberapa langkah yang harus diikuti, yaitu: [4]

1. Pengukuran sumber kebisingan.

Pengukuran dilakukan secara akurat dan tepat untuk mengidentifikasi distribusi kebisingan yang terjadi. Setelah itu kontrol kebisingan yang tepat dapat diukur pada setiap sumber yang memungkinkan.

2. Penentuan sasaran penurunan kebisingan

Apabila terdapat beberapa sumber kebisingan maka total output

kebisingan melebihin 1 sumber. Pada saat pengaturan sasaran desain kebisinganharus dipertimbangkan tingkat pengurangan kebisingan dari masing-masing sumber sehingga sasaran desain dapat tercapai.

3. Penjelasan kebutuhan penurunan kebisingan

Kebutuhan penurunan kebisingan sangat diperlukan karena terdapat perbedaan kelebihan kebisingan terhadap sasaran desain penurunan kebisingan.

4. Aplikasi kontrol kebisingan.

Pemilihan perlakuan penurunan kebisingan untuk membatasi radiasi, transmisi, dan kebisingan yang dibangkitkan pada beberapa sumber yang diidentifikasi dan dihitung berdasarkan langkah 1. Semua perlakuan harus dipilih sehingga efek keseluruhan dapat dikembangkan menjadi tingkat sasaran desain penurunan kebisingan seperti yang dijelaskan pada langkah 2, dalam kondisi biaya yang sedikit, tanpa interferensi dari operator, perawatan, dan tingkat keamanan. [4]


(44)

23 2.7Simulasi ANSYS

ANSYS adalah sebuah software analisis elemen hingga dengan kemampuan menganalisa dengan cakupan yang luas untuk berbagai jenis masalah (Tim Langlais, 1999). ANSYS mampu memecahkan persamaan diferensial dengan cara memecahnya menjadi elemen-elemen yang lebih kecil. Pada awalnya program ini bernama STASYS (Structural Analysis System), kemudian berganti nama menjadi ANSYS yang ditemukan pertama kali oleh Dr. John Swanson pada tahun 1970.

ANSYS merupakan tujuan utama dari paket permodelan elemen hingga untuk secara numerik memecahkan masalah mekanis yang berbagai macam. Masalah yang ada termasuk analisa struktur statis dan dinamis (baik linear dan non-linear), distribusi panas dan masalah cairan, begitu juga dengan ilmu bunyi dan masalah elektromagnetik. Teknologi ANSYS mekanis mempersatukan struktur dan material yang bersifat non-linear. ANSYS multiphysic juga mengatasi masalah panas, struktur, elektromagnetik, dan ilmu bunyi. Program ANSYS dapat digunakan dalam teknik sipil, teknik listrik, fisika dan kimia. [16]

2.7.1 Meshing

Mesh merupakan pembagian objek menjadi bagian bagian yang lebih kecil. Semakin kecil meshing yang dibuat maka hasil perhitungan akan semakin teliti namun membutuhkan daya komputasi yang besar. Selain melakukan

meshing, pada tahap ini juga akan dilakukan “pemberian nama” pada model yang

akan disimulasi.

Berikut ini akan ditunjukkan bagaimana melakukan meshing di Ansys Workbench: [16]


(45)

24 Gambar 2.6 Tampilan Meshing Pada Ansys (Dokumentasi)

2.7.2 Aplikasi ANSYS Dalam Akustik

Akustik adalah studi tentang generasi, propagasi, penyerapan dan refleksi gelombang tekanan suara dalam media cairan. Aplikasi untuk akustik adalah sebagai berikut:

1. Sonar.

2. Desain ruang konser, di mana pemerataan tekanan suara diinginkan. 3. Minimisasi kebisingan pada mesin.

4. Pembatalan kebisingan. 5. Akustik bawah air.

6. Desain speaker (Gambar 2.7), rumah speaker, filter akustik, muffler, dan banyak perangkat sejenis lainnya.


(46)

25 Gambar 2.7 Simulasi akustik pada speaker

(AACTx_R150_Workshops3 - Audio Speaker And Plate)

2.7.3 Acoustic ACT (Application Customization Toolkit) Extension

Acoustic ACT Extension adalah fitur tambahan dari Ansys yang dapat

memaparkan fitur-fitur akustik yang cukup lengkap. Fitur-fitur Ansys Acoustic

ACT Extension yaitu:

1. Menentukan sifat-sifat akustik.

2. Menentukan kondisi batas dan beban akustik. 3. Menentukan hasil proses akustik.

Pada analisis akustik yang tersedia di ANSYS, biasanya melibatkan pemodelan media cairan dan struktur sekitarnya. Yang sering menjadi perhatian pada analisis akustik distribusi tekanan pada cairan pada frekuensi yang berbeda, gradien tekanan, kecepatan partikel, SPL (sound pressure level), serta hamburan, difraksi, transmisi, radiasi, redaman, dan dispersi gelombang akustik.

Acoustic ACT dapat digunakan untuk melakukan simulasi sensor parkir

mobil yang mendeteksi benda-benda di sekitar mobil. Sensor ini bekerja dengan menggunakan gelombang ultrasonik dan gema yang dihasilkannya. Simulasi sensor parkir mobil dapat dilihat pada Gambar 2.8. [16]


(47)

26 Gambar 2.8 Simulasi sensor parkir mobil


(48)

27 BAB 3

METODOLOGI PENELITIAN

Dalam penelitian ini diterapkan metode penelitian dengan membangun kaidah numerik yang akan mensimulasikan kebisingan pompa kemudian hasil simulasi dibandingkan dengan hasil pengujian secara eksperimental yang dilakukan oleh peneliti lainnya.

3.1 Waktu dan Tempat Penelitian

Penelitian ini dilaksanakan sejak pengesahan usulan oleh pengelola program studi pada tanggal 27 februari 2015 sampai dinyatakan selesai yang direncanakan berlangsung selama ± 4 bulan. Tempat pelaksanaan penelitian adalah di Laboratorium Prestasi Mesin Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara. Kajian eksperimental ini akan dilaporkan oleh saudara Edi Halpita Putra. Sementara simulasi dilakukan di ruang

Computational And Experimental System Mechanics (CESM).

3.2 Bahan dan Alat Penelitian 3.2.1 Objek Penelitian

Data awal penelitian ini adalah pompa sentrifugal dengan spesifikasi sebagai berikut :

 Merk : DAP  Suction Head : 9 m  Discharged Head : 24 m  Kapasitas : 42 Ltr/det  Daya : 125 Watt  Voltage : 220 Volt  Putaran Aktual : 1956 rpm


(49)

28 Gambar 3.1 Pompa Sentrifugal DAP Skala Rumah Tangga (Dokumentasi)

Gambar 3.2 Gambar Komponen-Komponen Pompa DAP Model DB-125A (Dokumentasi)

Keterangan : 1: Pump Body 4 : Impeller 7 : Shaft

10 : Motor Body 11 : Motor end Cover 12 : Fan

13 : Fan Cover 14 : Terminal Cover

15 : Splash Guard 16 : Mechanical Seal 17 : Shaft Key 19 : Ball Bearing 20 : Ball Bearing 21 : Spring Washer 22 : Terminal Block 23 : Capasitor


(50)

29 24 : Tie Bolt

25 : Filling Plug 27 : “O” Ring

32 : Locking Ring 33 : End Cover 45 : Screw

3.2.2 Alat Penelitian

Dalam melakukan simulasi komutasional diperlukan beberapa alat seperti :

Perangkat Keras (Hardware) 4. Personal Computer (PC)

Personal Computer (PC) digunakan dalam penelitian ini yaitu dengan spesifikasi sebagai berikut :

Processor : Intel Core i5

RAM : 4 GB

CPU : 1,6 GHz

System : Windows 7 64–bit

VGA : NVIDIA GEFORCE

Berikut adalah gambar personal computer (PC).


(51)

30

Perangkat Lunak (Software) 1. AutoCad

AutoCad adalah software yang digunakan untuk membangun model pompa. Berikut adalah tampilan dari software AutoCad.

Gambar 3.4 Tampilan Software AutoCad (Dokumentasi) 2. Ansys 15.0

Ansys 15.0 adalah software yang digunakan untuk membangun model empirik dan numerik pompa untuk kemudian dapat dilakukan simulasi uji kebisingan (noise). Berikut adalah gambar tampilan software Ansys 15.0.


(52)

31 3.3 Metode Penelitian

Pada mulanya peneliti membangun geometri pompa dalam komputer dengan menggunakan perangkat lunak AutoCad 2011 dan kemudian simulasi kinerja pompa dilakukan dengan membangun komputasi numerik menggunakan perangkat lunak Ansys 15.0 pada poros, impeller, bearing dan pada pompa secara utuh. Sedangkan pengujian secara eksperimental dilakukan secara langsung di lapangan dengan cara mengukur kebisingan pompa menggunakan “Sound Level Meter” yang telah dilakukan peneliti lainnya. Pengukuran sinyal noise yang timbul akibat putaran pompa yaitu pada arah horizontal, vertikal, dan diagonal dengan kecepatan 1956 rpm. Kemudian seluruh data yang diperoleh dicatat. 3.4 Identifikasi Parameter

Secara komputasi pembangunan model dan pengujian dilakukan untuk identifikasi karakteristik kebisingan yang terjadi pada pompa. Pada saat impeller

berputar akan disimulasi kebisingan yang dihasilkan oleh impeller dengan menggunakan metode empirik yaitu dengan menggunakan software Ansys 15.0.

Hasil eksperimental yang digunakan sebagai validasi data untuk komputasional secara lengkapnya dilakukan diset-up peralatan pengujian yaitu sebagai berikut :

1. Hubungkan pompa dengan power supplay. 2. Hidupkan sound level meter.

3. Setting rentang ukur kebisingan diantara 40 dB – 120 dB.

4. Ukur jarak antara sound level meter ke propeller menggunakan meteran dengan jarak 5, 10, 15 cm.

5. Arahkan microphone yang ada pada sound level meter ke arah impeller.

6. Hidupkan motor.

7. Lakukan pengambilan data pada arah vertikal, horizontal dan aksial. 8. Lihat hasil kebisingan yang tertera di sound level meter dan olah data


(53)

32 3.5 Variabel Yang Diamati

Sesuai dengan performansi pompa secara eksperimen, variabel tertentu menjadi fokus perhatian yang perlu dikondisikan untuk pengolahan data guna mendapatkan hasil yang mendekati sempurna. Adapun variabel yang diamati dalam studi eksperimental dan simulasi numerik ini adalah sebagai berikut:

 Secara eksperimental :

1. Jarak sound level meter Bruel & Kjaer type 2238 fulfils ke impeller.

2. Noise pada pompa dengan arah horizontal, vertikal, aksial.

 Secara simulasi Numerik :

1. Noise pada poros dengan arah horizontal, vertikal, aksial

2. Noise pada impeller horizontal, vertikal, aksial

3. Noise pada cashing horizontal, vertikal, aksial

3.6 Parameter Fluida

Parameter fluida pada saat melakukan komputasi adalah sifat-sifat fisik daripada air tanah. Parameter fluida yang dimaksud dapat dilihat pada tabel 3.1. di bawah ini.

Tabel 3.1. Parameter fluida

No Parameter Keterangan

1. Jenis fluida Air

2. Tekanan fluida 1 atm (10325 Pa)

3. Suhu 20 0 C


(54)

33 3.7 Design Of Experimental

Dalam mengidentifikasi gejala getaran pada konstruksi pompa perlu dibangun model eksperimental dari struktur yang melahirkan kebisingan (noise). Adapun komponen-komponen yang mempengaruhi lahirnya kebisingan (noise) pompa adalah :

1. Instalasi pipa 2. Konstruksi pompa

1. Instalasi Pipa

Instalasi pipa yang digunakan untuk penyediaan air bersih dalam skala rumah tangga digunakan pipa dengan ukuran 3/4 in, dan 1 in. Berikut ini gambar instalasi pipa yang di gunakan.


(55)

34

DOE Instalasi pipa

Berdasarkan diagram DOE pipa diatas dapat dijelaskan bahwa saat pompa beroperasi menghisap air melalui pipa terdapat beberapa parameter yang mempengaruhi noise pada instalasi pipa seperti : debit air, kecepatan aliran, viskositas zat cair, diameter pipa, panjang pipa hisap, roughness pipa dan jumlah elbow.

Semakin panjang pipa hisap semakin berat kerja pompa oleh karena itu semakin besar noise yang dihasilkan. Kekasaran pipa juga berpengaruh pada vibrasi instalasi pipa dimana semakin tinggi nilai kekasaran pipa maka semakin besar gesekan antara air dan pipa sehingga terjadi noise yang tinggi. Semakin

Debit Q = A . v Reynold Re=� � � Kerugian gesek hf = λ Lv

D g Masukan

Debit(Q) = m3/h Kecepatan(V) = m/s Head Losses(L) = m

Keluaran Debit(Q) = m3/h Kecepatan(V) = m/s Head(H) = m Parameter Terkontrol

Diameter(D) = mm Panjang pipa(L) = m Jumlah elbow

Parameter Tak Terkontrol

Roughness(ε) = mm Koefisien gesek(µ) Viskositas(v) = m2/s


(56)

35 tinggi viskositas zat cair yang melalui pipa maka semakin besar noise yang terjadi pada pipa karena kerja pompa yang semakin berat.

2. Konstruksi Pompa

Berikut adalah gambar instalasi pompa DAP skala rumah tangga.

Gambar 3.7 Instalasi Pompa

Adapun uraian setiap komponen pompa yang mempengaruhi getaran pompa dan fungsinya adalah sebagai berikut:

Tabel 3.2. Design Of Experiment (DOE)

No Nama Komponen Fungsi

1 Impeller untuk mengubah energi mekanis dari pompa

menjadi energi kecepatan pada cairan yang dipompakan secara kontinyu, sehingga cairan pada sisi isap secara kontinyu akan masuk mengisi kekosongan akibat perpindahan dari cairan yang masuk sebelumnya.

2 Shaft/poros untuk meneruskan momen puntir dari

penggerak selama beroperasi dan tempat kedudukan impeller dan bagian-bagian berputar lainnya.


(57)

36

3 Bearing untuk menumpu dan menahan beban dari

poros agar dapat berputar, baik berupa beban radial maupun beban axial

1. Impeller

Berikut gambar impeler pompa DAP.

Gambar 3.8 Impeler pompa DAP (Dokumentasi)

DOE Impeller

Frek. dasar f = � 60 Stiffness k= �

Input

Debit(Q) = m3/h Kecepatan aliran(V) = m/s

Output

Debit(Q) = m3/h Kecepatan(V) = m/s Head(H) = m

Uncontrol able parameter Viskositas (m2/s)

Material yang terkandung Kavitasi

Control able parameter Debit (Q) = m3/h


(58)

37 Berdasarkan diagram DOE impeler diatas dapat dijelaskan bahwa saat impeler berputar menghisap air terdapat beberapa parameter yang mempengaruhi getaran yang terjadi seperti : debit air masuk, viskositas zat cair, material yang terkandung dalam air, kavitasi dan unbalance.

Semakin besar debit air yang menumbuk impeler maka noise impeler semakin tinggi. Semakin tinggi viskositas zat cair yang diputar impeler akan menimbulkan noise yang tinggi pada impeler. Material-material lain yang terkandung dalam air seperti logam, pasir, lumpur juga akan menimbulkan noise yang tinggi pada impeler karena akan terjadi tumbukan antara impeler dan material-material tersebut ketika impeler berputar. Gelembung-gelembung udara yang timbul akibat tekanan fluida pada sisi hisap turun mendekati teknan uap dari fluida akan menyebabkan terjadinya tumbukan antara impeler dan gelembung. Jika keadaan ini terjadi pada waktu yang lama impeler akan menjadi rusak (patah) sehingga impeler akan terjadi unbalance.

2. Poros

Berikut gambar poros pompa DAP.


(59)

38

DOE Poros

Berdasarkan diagram DOE poros diatas dapat dijelaskan bahwa saat poros berputar ketika pompa beroperasi terdapat beberapa parameter yang mempengaruhi noise yang terjadi seperti : unbalance dan poros bengkok.

Ketika poros pompa memiliki inersia yang tidak merata maka akan terjadi unbalance yang akan menimbulkan noise hal dapat terjadi karena beberapa sebab seperti material poros yang tidak homogen atau terjadi cacat pada permukaan poros. Hampir sama halnya dengan unbalance, kasus poros bengkok akan menimbulkan noise yang tinggi karena poros tidak berputar pada titik pusat putaran.

Daya poros P = �� �� Stiffness k= �

Torsi τ = F r

Input

Putaran(n) = rpm Daya(P) =Watt

Output Putaran Impeller Controlable parameter

Unbalance

Uncontrolable parameter Poros bengkong


(60)

39 3. Bearing

Gambar 3.10 Bearing (google.com)

DOE Bearing

Gaya gesek Fs = N µ

Inner Race BPFI = �� ( 1+

�cos�) x RPM Outer Race BPFO = �� ( 1- �

��cos�) x RPM Ball BSF = ��

� 1 − �

��cos� x RPM Cage FTF = 1 − �

��cos� xRPM Input

Putaran(n) = rpm Beban(W) = N

Output Putaran bebas poros(n) = rpm Getaran casing = Hz Controlable parameter

Geometri bearing

Uncontrolable parameter Ball bearing


(61)

40 Berdasarkan diagram DOE bearing diatas dapat dijelaskan bahwa saat poros berputar ketika pompa beroperasi terdapat beberapa parameter yang mempengaruhi noise yang terjadi pada bearing seperti : inner race bearing, ball bearing, geometri bearing.

Pada saat bearing berputar ball bearing akan mengalami kontak langsung dengan inner race yang akan menimbulkan gesekan dan jika kondisi tersebut terjadi pada waktu yang lama, maka kedua komponen tersebut akan mengalami keausan pada permukaannya sehingga akan menimbulkan noise. Parameter geometri bearing yang menentukan frekuens noise yaitu diameter bola, jumlah bola, diameter pitch dan sudut kontak.

3.8 Kerangka Konsep Pemodelan Numerik

Adapun kerangka konsep pemodelan numerik ini dapat dilihat seperti ditunjukan pada gambar 3.11.

Gambar 3.11 Kerangka konsep pemodelan numerik Permasalahan

1. Fenomena kebisingan pada pompa

Pengamatan

1. Membangun model FEM pompa

2. Membangun model BEM pompa

Parameter Kontrol 1.Jarak ukur

Alat simulasi 1.Personal Comuter 2. Perangkat lunak FEM

Hasil

1. Data kebisingan yang ditimbulkan pompa secara simulasi


(62)

41 Ya

Tidak

3.9 Pelaksanaan Penelitian

Pelaksanaan penelitian dimulai dari studi literatur, persiapan, pengumpulan data, pengolahan data, analisa data dan kesimpulan, secara garis besar dapat dilihat Gambar 3.12 diagram alir proses pelaksanaan sebagai berikut:

Desaign Of Experimental (DOE)

Masukan Parameter-Parameter Membangun Model Empirik

Eksekusi Hasil Simulasi

Selesai Mulai

Membangun Model CAD

Membangun Model Numerik

Validasi Data


(63)

42 Gambar 3.12 Diagram alir proses pelaksanaan

3.10 Setup Komputasi 3.10.1 Tahap Pre-Processing

Proses pre-processing merupakan proses yang dilakukan sebelum pengujian (simulasi). Proses ini mencakup pembuatan model, penentuan domain

dan pembuatan mesh (meshing).

1. Pembuatan Model

Pembuatan model pompa sentrifugal DAP dalam simulasi ini sesuai dengan bentuk dan dimensi yang sebenarnya. Pembuatan model CAD dilakukan dengan menggunakan perangkat lunak AutoCAD (Gambar 3.13).

Gambar 3.13 Pembuatan Model Pompa Sentrifugal DAP dengan Perangkat Lunak

AutoCAD (Dokumentasi)

2. Menentukan Domain Komputasi

Computational domain merupakan bidang batas simulasi yang akan

dipengaruhi oleh fluida di sekitar mesin. Domain komputasi ditentukan oleh sebuah kubus pejal seperti terlihat pada Gambar 3.14.


(64)

43 Gambar 3.14 Domain Komputasi(Dokumentasi)

3. Pembuatan Mesh

Unit-unit volume pada simulasi ANSYS diinterpretasikan dengan pembentukan mesh atau grid. Dalam penelitian ini element size pada mesh diatur pada 0.01 m. Bentuk mesh dapat dilihat pada Gambar 3.15.


(65)

44 4. Menginput Properties Dari Domain

Pada bagian ini diinput data properties dari acoustic body yaitu udara (Gambar 3.16). Properties udara yang diinput adalah massa jenis, cepat rambat suara, viskositas, konduktivitas termal dan panas jenis. Data properties dari udara diperoleh dari Tabel 3.1.

Gambar 3.16 Input properties domain (Dokumentasi)

5. Menginput Bidang Akustik

Pada bagian ini diinput bidang permukaan dari geometri akustik. Untuk pengaturan lainnya digunakan pengaturan default seperti terlihat pada Gambar 3.17.

Gambar 3.17 Input tekanan akustik (Dokumentasi)

6. Mendefenisikan Eksitasi Gelombang Planar

Pada bagian ini dimasukkan pengaturan gelombang yang tereksitasi ke udara (Gambar 3.18). Nilai tekanan yang dimasukkan adalah nilai tekanan


(66)

45 atmosfir yaitu 101.325 Pa. Nilai rapat massa adalah nilai rapat massa udara yaitu 1,2041 kg/m3. Nilai cepat rambat suara pada udara adalah 343,24 m/s.

Gambar 3.18 Input data sumber gelombang akustik (Dokumentasi)

7. Mendefenisikan Kontrol Hamburan

Pada bagian ini dimasukkan pengaturan jenis hamburan dari gelombang.

Scattered Field Output diatur pada Scattered seperti terlihat pada Gambar 3.19.

Gambar 3.19 Input kontrol hamburan

3.10.2 Tahap Post-Processing

Pada tahap ini ditentukan hasil yang ingin didapatkan dari proses simulasi. Untuk penelitian ini hasil yang ingin didapat dari simulasi adalah nilai SPL (sound

pressure level).

3.10.3 Menjalankan Simulasi

Setelah tahap post-processing dan solution telah selesai diatur, maka simulasi dimulai (solve). Proses running simulasi merupakan tahap akhir dari proses simulasi, selanjutnya tinggal menunggu hasil simulasi.


(67)

46 3.11 Diagram Alir Simulasi

Secara garis besar, proses simulasi akan dilaksanakan seperti yang ditunjukkan pada Gambar 3.20.

tidak

ya

Gambar 3.20 Diagram alir simulasi Pembuatan geometri di AutoCAD

Proses import model pada ANSYS 15.0.

Proses meshing

Pendefenisian bidang batas

Solve

Plot kontur kebisingan

MULAI

SELESAI


(68)

47 BAB 4

HASIL DAN PEMBAHASAN

4.1 Membangun Design Of Experimental (DOE)

Dalam membangun Design Of Experimental (DOE), terdapat parameter input dan parameter output. Adapun parameter-parameter tersebut adalah sebagai berikut :

Tabel 4.1 Parameter Design Of Experimental (DOE)

Komponen Parameter

Input Output

Instalasi Pipa  Debit air (Q) = m3/h  Kecepatan air (V) = m/s  Head Losses (L) = m

 Debit air (Q) = m3/h  Kecepatan air (V) = m/s  Head (H) = m

Impeller  Debit air (Q) = m3/h  Kec. aliran (V) = m/s

 Debit air (Q) = m3/h  Kec. aliran (V) = m/s Head (H) = m

Poros (shaft) Putaran (n) = rpm Daya (P) = Watt

 Putaran Impeller

Bantalan (bearing)  Putaran (n) = rpm  Beban (W) = N

Put.Bebas Poros (n) = rpm

4.2 Membangun CAD

Komponen-komponen utama yang menimbulkan noise pada struktur pompa adalah sebagai berikut :

1. Kopling 2. Fluida


(69)

48 4. Impeller

5. Poros (shaft)

Adapun yang hanya 3 komponen yang dapat peneliti uji kebisingannya secara komputasi yaitu bearing (bantalan), impeller dan poros (shaft). Sedangkan pada kopling tidak dapat dilakukan uji komputasi dikarenakan pada pompa skala rumah tangga ini tidak terdapat kopling dan pada fluida sendiri dikarenakan tidak memungkinkan untuk dapat dilakukan uji komputasi kebisingan (noise).

Berikut adalah gambar ketiga komponen utama pompa yang akan disimulasikan.

1. Bearing (bantalan)

Gambar 4.1 Bearing (bantalan)

2. Impeller


(70)

49 3. Poros (shaft)

Gambar 4.3 Poros (shaft)

4.3 Simulasi Uji Kebisingan (Noise) Pada Komponen Utama Pompa Baru Simulasi uji kebisingan(noise) pada komponen utama pompa baru ini bertujuan untuk mendapatkan atau mengetahui bagian pompa manakan yang menyebabkan timbulnya kebisingan(noise) paling tinggi dari pompa baru. Oleh karena itu, dilakukanlah simulasi uji kebisingan pada beberapa komponen pompa yaitu shaft, impeller dan juga bearing. Dengan demikian kita dapat mengetahui bagian pompa manakah yang menyebabkan tingginya tingkat kebisingan pada pompa, sehingga kita dapat dengan efektif dan efisien dalam melakukan perawatan (maintenance) ketika suatu saat tindakan tersebut diperlukan. Simulasi ini diasumsikan pada keadaan steady.

Berikut ini adalah hasil dari simulasi uji kebisingan (noise) dari komponen utama pada pompa baru.

4.3.1 Simulasi Uji Kebisingan (Noise) Pada Shaft

Berikut ini adalah hasil simulasi uji kebisingan (noise) pada shaft pompa. Dari gambar di bawah ini dapat dilihat bahwa shaft menimbulkan kebisingan sebesar 59,467 dB


(71)

50 Gambar 4.4 Noise Contour Pada Shaft Pompa Baru

4.3.2 Simulasi Uji Kebisingan (Noise) Pada Impeller

Berikut ini adalah hasil simulasi uji kebisingan (noise) pada impeller pompa. Dari gambar di bawah ini dapat dilihat bahwa impeller menimbulkan kebisingan sebesar 79,052 dB

Gambar 4.5 Noise Contour Pada Impeller Pompa Baru

4.3.3 Simulasi Uji Kebisingan (Noise) Pada Bearing

Berikut ini adalah hasil simulasi uji kebisingan (noise) pada bearing pompa. Dari gambar di bawah ini dapat dilihat bahwa bearing menimbulkan kebisingan sebesar 78,781 dB


(72)

51 Gambar 4.6 Noise Contour Pada Bearing Pompa Baru

Dari simulasi ketiga komponen pompa di atas, terlihat bahwa pada impeller yang paling tinggi menimbulkan kebisingan (noise). Sehingga dapat disimpulkan bahwa pada pompa DAP skala rumah tangga yang saya teliti, impellerlah komponen yang menimbulkan kebisingan (noise) paling tinggi.

4.4 Simulasi Uji Kebisingan (Noise) Pada Pompa Baru

Pada bab ini akan dibahas hasil simulasi noise dari pompa sentrifugal DAP. Hasil yang diperoleh adalah berupa kontur noise yang ditunjukkan oleh warna-warna yang menunjukkan besarnya SPL (Sound Pressure Level) yang tereksitasi ke udara di sekitar pompa. Simulasi divariasikan dengan jarak ukur 5, 10, 15 dan 20 cm pada sumbu X, -X, Y, -Y dan Z. Simulasi ini diasumsikan pada keadaan

steady. Berikut adalah hasil simulasi sumbu X jarak 5 cm dengan nilai SPL = 73,2 dB. Untuk hasil simulasi secara lengkap dapat dilihat pada lampiran.


(73)

52 Gambar 4.7 Noise Contour Pada Sumbu X

4.5 Simulasi Uji Kebisingan (Noise) Pada Komponen Utama Pompa Lama Simulasi uji kebisingan(noise) pada komponen utama pompa lama ini bertujuan untuk mendapatkan atau mengetahui bagian pompa manakan yang menyebabkan timbulnya kebisingan(noise) paling tinggi dari pompa baru. Oleh karena itu, dilakukanlah simulasi uji kebisingan pada beberapa komponen pompa yaitu shaft, impeller dan juga bearing. Dengan demikian kita dapat mengetahui bagian pompa manakah yang menyebabkan tingginya tingkat kebisingan pada pompa, sehingga kita dapat dengan efektif dan efisien dalam melakukan perawatan (maintenance) ketika suatu saat tindakan tersebut diperlukan. Simulasi ini diasumsikan pada keadaan steady.

Berikut ini adalah hasil dari simulasi uji kebisingan (noise) dari komponen utama pada pompa lama.


(74)

53 4.5.1 Simulasi Uji Kebisingan (Noise) Pada Shaft

Berikut ini adalah hasil simulasi uji kebisingan (noise) pada shaft pompa. Dari gambar di bawah ini dapat dilihat bahwa shaft menimbulkan kebisingan sebesar 60,645 dB

Gambar 4.8 Noise Contour Pada Shaft Pompa Lama

4.5.2 Simulasi Uji Kebisingan (Noise) Pada Impeller

Berikut ini adalah hasil simulasi uji kebisingan (noise) pada impeller pompa. Dari gambar di bawah ini dapat dilihat bahwa impeller menimbulkan kebisingan sebesar 88,425 dB


(75)

54 4.5.3 Simulasi Uji Kebisingan (Noise) Pada Bearing

Berikut ini adalah hasil simulasi uji kebisingan (noise) pada bearing pompa. Dari gambar di bawah ini dapat dilihat bahwa bearing menimbulkan kebisingan sebesar 80,68 dB

Gambar 4.10 Noise Contour Pada Bearing Pompa Lama

Dari simulasi ketiga komponen pompa di atas, terlihat bahwa pada impeller yang paling tinggi menimbulkan kebisingan (noise). Sehingga dapat disimpulkan bahwa pada pompa DAP skala rumah tangga yang saya teliti, impellerlah komponen yang menimbulkan kebisingan (noise) paling tinggi.

4.6 Simulasi Uji Kebisingan (Noise) Pada Pompa Lama

Pada bab ini akan dibahas hasil simulasi noise dari pompa sentrifugal DAP. Hasil yang diperoleh adalah berupa kontur noise yang ditunjukkan oleh warna-warna yang menunjukkan besarnya SPL (Sound Pressure Level) yang tereksitasi ke udara di sekitar pompa. Simulasi divariasikan dengan jarak ukur 5, 10, 15 dan 20 cm pada sumbu X, -X, Y, -Y dan Z. Simulasi ini diasumsikan pada keadaan

steady. Berikut adalah hasil simulasi sumbu X jarak 5 cm dengan nilai SPL = 84,222 dB. Untuk hasil simulasi secara lengkap dapat dilihat pada lampiran.


(76)

55 Gambar 4.11 Noise Contour Pada Sumbu X

4.7 Rekapitulasi Hasil Simulasi Noise Pompa Baru

Dari simulasi yang dilakukan diperoleh nilai SPL yang diuraikan pada Tabel 4.2.

Tabel 4.2 Nilai SPL dari hasil simulasi Sumbu

Pengukuran

Jarak (cm)

5 10 15 20

X 73,2 72,2 70,12 63,3

Y 97,7 94,6 91,2 86,0

-Y 96,3 93,7 89,2 85,4

Z 79,5 73,5 72,5 64,2

Dibawah ini adalah grafik yang menunjukkan hubungan antara nilai kebisingan dengan jarak ukur.


(77)

56 Gambar 4.12 Perbandingan Grafik SPL dan Jarak Pada Pompa Baru

4.8 Rekapitulasi Hasil Simulasi Noise Pompa Lama

Dari simulasi yang dilakukan diperoleh nilai SPL yang diuraikan pada Tabel 4.3.

Tabel 4.3 Nilai SPL dari hasil simulasi Sumbu

Pengukuran

Jarak (cm)

5 10 15 20

X 84,222 80,906 76,032 75,094

Y 99,25 95,6 93,7 87,5

-Y 98,7 96,3 92,2 86,6

Z 81,5 74,327 73,8 68,504

Dibawah ini adalah grafik yang menunjukkan hubungan antara nilai kebisingan dengan jarak ukur.

60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100

0 5 10 15 20 25

S PL (d B ) Jarak (Cm)

Perbandingan SPL dan Jarak Pada

Pompa Baru

Sumbu X Sumbu Y Sumbu -Y Sumbu Z


(78)

57 Gambar 4.13 Perbandingan Grafik SPL dan Jarak Pada Pompa Lama

4.9 Validasi Data

Sebagai validasi data, peneliti membandingkan hasil komputasi uji kebisingan (noise) pompa dengan hasil pengujian secara eksperimental. Untuk kemudian dihitung perbedaan hasil uji kebisingannya dalam bentuk persen ralat.

4.9.1 Hasil Pengukuran Sound Pressure Level (SPL) Secara Eksperimental Pompa Baru

Berikut ini adalah data hasil pengukuran sound pressure level (SPL) pompa sentrifugal DAP dengan jarak pengukuran 5, 10, 15 dan 20 cm dengan menggunakan alat “Sound Level Meter” pada arah horizontal, vertikal dan axial. Hasil pengukuran SPL pompa baru ditunjukkan pada Tabel 4.4.

60 63 66 69 72 75 78 81 84 87 90 93 96 99

0 5 10 15 20 25

S

PL

(d

B

)

Jarak Ukur (cm)

Perbandingan Grafik SPL dan Jarak Pada

Pompa Lama

Sumbu X Sumbu Y Sumbu - Y Sumbu Z


(79)

58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90

0 5 10 15 20 25

S P L ( d B ) Jarak (cm)

Perbandingan Grafik SPL dan Jarak

Pada Pompa

Sumbu X Sumbu Y Sumbu -Y Sumbu Z Tabel 4.4 Hasil Pengukuran Kebisingan Pompa Baru Secara Eksperimental

Sumbu Pengukuran

Jarak (cm)

5 10 15 20

X 78,9 76,2 68,0 66,9

Y 77,8 72,3 69,0 66,7

-Y 78,5 72,2 68,0 65,1

Z 74,8 70,4 64,0 62,9

Gambar 4.14 Perbandingan Grafik SPL dan Jarak Pada Pompa Baru (eksperimental)

Grafik di atas menjelaskan 4 titik pengkuruan kebisingan (noise) pada pompa yaitu pada sumbu X, Y, -Y dan Z. Pada sumbu –X tidak dilakukan pengukuran dikarenakan pada titik tersebut bukan bagian dari pompa melainkan kipas motor. Sedangkan pada sumbu –Z dikarenakan instalasi pompa yang terlalu dekat dengan fondasi sehingga tidak dapat dilakukan pengukuran.

Dari grafik di atas terlihat bahwa hasil pengukuran kebisingan pompa semakin kecil pada jarak ukur yang semakin jauh.


(80)

59 4.9.2 Hasil Pengukuran Sound Pressure Level (SPL) Secara Eksperimental

Pompa Lama

Berikut ini adalah data hasil pengukuran sound pressure level (SPL) pompa sentrifugal DAP dengan jarak pengukuran 5, 10, 15 dan 20 cm dengan menggunakan alat “Sound Level Meter” pada arah horizontal, vertikal dan axial. Hasil pengukuran SPL pompa baru ditunjukkan pada Tabel 4.5.

Tabel 4.5 Hasil Pengukuran Kebisingan Pompa Lama Secara Eksperimental Sumbu

Pengukuran

Jarak Ukur (cm)

5 10 15 20

X 82,4 79,9 75,2 74,7

Y 78,6 75,5 72,4 69,7

-Y 80,2 74,4 70,2 67,0

Z 77,2 73,5 68,2 66,6

60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90

0 5 10 15 20 25

SP

L

(dB)

Jarak (cm)

Perbandingan Grafik SPL dan Jarak Pada

Pompa Lama

Sumbu X Sumbu Y Sumbu -Y Sumbu Z


(81)

60 Gambar 4.15 Perbandingan Grafik SPL dan Jarak Pada Pompa Lama

(eksperimental) 4.10 Menghitung Persen Ralat Pada Pompa Baru

Sebagaimana tujuan dari penelitian ini adalah mendapatkan nilai kebisingan dari pompa sentrifugal DAP dengan cara mensimulasikannya menggunakan software perangkat lunak FEM kemudian membandingkan hasilnya dengan hasil

pengukuran secara eksperimental dengan menggunakan alat “Sound Level Meter” dan menghitung selisih nilai kebisingannya dalam bentuk persen ralat, maka berikut ini adalah nilai persen ralat daripada kedua hasil pengukuran tersebut.

4.10.1 % Ralat Pada Sumbu X  Jarak Ukur 5 cm

% Ralat =

x 100 % =

x 100 % = x 100 %

= 0,07 x 100 % = 7,7 %

 Jarak Ukur 10 cm

% Ralat =

x 100 % = 6

x 100 % = 0,05 x 100 %

= 5,5 %  Jarak Ukur 15 cm


(1)

xxi

5. Sumbu X jarak 10 cm (SPL = 80,906 dB)


(2)

xxii

7. Sumbu Y jarak 10 cm (SPL = 95,6 dB)


(3)

xxiii

9. Sumbu X jarak 15 cm (SPL = 76,032 dB)


(4)

xxiv

11.Sumbu Y jarak 15 cm (SPL = 93,7 dB)


(5)

xxv

13.Sumbu X jarak 20 cm (SPL = 75,094 dB)


(6)

xxvi

15.Sumbu Y jarak 20 cm (SPL = 87,5 dB)