sigma09-055. 312KB Jun 04 2011 12:10:27 AM

Symmetry, Integrability and Geometry: Methods and Applications

SIGMA 5 (2009), 055, 20 pages

Theta Functions, Elliptic Hypergeometric Series,
and Kawanaka’s Macdonald Polynomial Conjecture⋆
Robin LANGER † , Michael J. SCHLOSSER



and S. Ole WARNAAR

§



Department of Mathematics and Statistics, The University of Melbourne, VIC 3010, Australia
E-mail: [email protected]




Fakult¨
at f¨
ur Mathematik, Universit¨
at Wien, Nordbergstrasse 15, A-1090 Vienna, Austria
E-mail: [email protected]

§

School of Mathematics and Physics, The University of Queensland,
Brisbane, QLD 4072, Australia
E-mail: [email protected]

Received March 01, 2009, in final form May 19, 2009; Published online May 25, 2009
doi:10.3842/SIGMA.2009.055
Abstract. We give a new theta-function identity, a special case of which is utilised to prove
Kawanaka’s Macdonald polynomial conjecture. The theta-function identity further yields
a transformation formula for multivariable elliptic hypergeometric series which appears to
be new even in the one-variable, basic case.
Key words: theta functions; Macdonald polynomials; elliptic hypergeometric series
2000 Mathematics Subject Classification: 05E05; 33D52; 33D67


1

Introduction

The recent discovery of elliptic hypergeometric series (EHS) by Frenkel and Turaev [2] has led
to a renewed interest in theta-function identities. Such identities are at the core of many of the
proofs of identities for EHS associated with root systems. If, for |p| < 1 and x ∈ C∗ ,
θ(x) = θ(x; p) =


Y

k=0



1 − xpk 1 − x−1 pk+1

is a normalised theta function, then three examples of theta function identities featured in the

theory of EHS are
n
X
i=1

n
X
i=1

n
Q

θ(xi /yj )

j=1
n
Q

=0


for x1 · · · xn = y1 · · · yn ,

(1.1)

θ(xi /xj )

j=1, j6=i

xi

n−2
Q

j=1
n
Q

θ(xi /yj )θ(xi yj )
=0


for n ≥ 2,

(1.2)

θ(xi /xj )θ(xi xj )

j=1, j6=i


This paper is a contribution to the Proceedings of the Workshop “Elliptic Integrable Systems, Isomonodromy
Problems, and Hypergeometric Functions” (July 21–25, 2008, MPIM, Bonn, Germany). The full collection is
available at http://www.emis.de/journals/SIGMA/Elliptic-Integrable-Systems.html

2

R. Langer, M.J. Schlosser and S.O. Warnaar

and
X Y θ(yi xj ) Y θ(qyi /yj )
X Y θ(xi yj ) Y θ(qxi /xj )

=
,
θ(qxi yj )
θ(xi /xj )
θ(qyi xj )
θ(yi /yj )

I⊆[n] i∈I
|I|=r j∈[n]

I⊆[n] i∈I
|I|=r j∈[n]

i∈I
j6∈I

(1.3)

i∈I
j6∈I


where [n] := {1, 2, . . . , n}. The identity (1.1) is standard and can for example be found in
the classic text of Whittaker and Watson [24, page 451]. It was employed by Gustafson in [4]
to derive an An−1 extension of Bailey’s very-well-poised 6 ψ6 summation. In the same paper,
Gustafson discovered the identity (1.2) [4, Lemma 4.14] and used it to derive a Cn extension of
Bailey’s very-well-poised 6 ψ6 summation. The identities (1.1) and (1.2) were also employed by
Rosengren in [14] to prove elliptic analogues of Milne’s An−1 Jackson sum [12] and Schlosser’s
Dn Jackson sum [20]. The identity (1.3) was only recently discovered by Kajihara and Noumi
[6, Theorem 1.3] by combining symmetries of the Frobenius determinant with operator methods. They used it to extend Rosengren’s elliptic An−1 Jackson summation to a transformation
between EHS on A-type root systems of different rank, see [6, Theorem 2.1]. Ruijsenaars, in his
study of integrable systems of Calogero–Moser type, also discovered the identity (1.3), see [18,
Equation (2.44)], where it appeared in the form of a functional equation encoding the commutativity of analytic difference operators of type An−1 . Earlier, he had used a special case of this
identity (Equation (2.4) in [17], see also [19]) to show the commutativity of what is nowadays
known as the Macdonald–Ruijsenaars difference operator [17].
Let
(a)n = (a; q, p)n =

n−1
Y


θ aq k ; p

k=0



be a theta shifted factorial (cf. [3, Chapter 11]), and set
(a1 , . . . , ak )n = (a1 )n · · · (ak )n .
Then the main result of this paper is the following new identity for theta functions.
Theorem 1.1. For n a nonnegative integer and v, w, q, t, x1 , . . . , xn ∈ C∗ such that both sides
are well defined,
n
X
r=0

X Y qθ(vxi /tw)θ(tq −r xi /qw)
(v, w)r
(qv/t, qw/t)r
tθ(vxi /qw)θ(q −r xi /w)
×


Y
j6∈I

=

n
X
r=0

×

I⊆[n] i∈I
|I|=r
θ(xj /q)θ(q −r xj /tw)
θ(xj /t)θ(q −r xj /qw)

Y θ(txi /qxj )θ(qxi /xj )
i∈I
j6∈I


θ(xi /xj )θ(txi /xj )

X Y qθ(xi /q)θ(q r vxi /t2 )
(v, w)r
(qv/t, qw/t)r
tθ(xi /t)θ(q r vxi /tq)

Y
j6∈I

I⊆[n] i∈I
|I|=r
θ(vxj /tw)θ(q r vxj /q)
θ(vxj /qw)θ(q r vxj /t)

Y θ(txj /qxi )θ(qxj /xi )
i∈I
j6∈I


θ(xj /xi )θ(txj /xi )

.

After clearing denominators and replacing (t, v, w, x1 ) 7→ (tq, tv, w−1 , qtx) the n = 1 case of
the theorem takes the form


θ(v)θ(tx)θ(tw)θ(wx)θ(tvx)θ t2 vwx + θ(w)θ(x)θ(tv)θ(tvx)θ t2 wx θ(tvwx)

Theta Functions and Kawanaka’s Conjecture

3



= θ(v)θ(x)θ(tw)θ(twx)θ t2 vx θ(tvwx) + θ(w)θ(tx)θ(tv)θ(vx)θ(twx)θ t2 vwx . (1.4)

This formula, which also follows from the (n, r) = (2, 1) case of (1.3) upon clearing denominators and substituting (x2 , y1 , y2 , q) 7→ (twxx1 , v/x1 , 1/txx1 , t), is a once-iterated version of the
Riemann relation1
θ(xz)θ(x/z)θ(yw)θ(y/w) − θ(xw)θ(x/w)θ(yz)θ(y/z) =

y
θ(xy)θ(x/y)θ(zw)θ(z/w).
z

(1.5)

We remark that formula (1.4) is a four-term identity involving four free parameters, each
term containing a product of six theta functions. For comparison, the formula (1.1) ((1.2))
for n = 4 is a four-term identity involving seven (six ) free parameters, each term containing
a product of seven (ten) theta functions.
As will be shown in Section 4, Theorem 1.1 can be used to obtain identities for EHS for the
root systems of type A. More unexpectedly, however, it also implies a combinatorial identity in
the theory of Macdonald polynomials [11, Chapter VI], conjectured in 1999 by Kawanaka [8].
For λ a partition let Pλ (x; q, t) be the Macdonald symmetric function in countably many independent variables x = (x1 , x2 , . . . ). Let a(s) and l(s) be the arm-length and leg-length of the
square s in the diagram of λ, and let
(a; q)∞ =


Y

1 − aq k

k=0



be a q-shifted factorial.
Conjecture 1.2 (Kawanaka). The following formal identity holds:
X Y 1 + q a(s) tl(s)+1 
 Y (−txi ; q)∞ Y (t2 xi xj ; q 2 )∞
2 2
x;
q
,
t
=
P
.
λ
a(s)+1 tl(s)
(xi ; q)∞
(xi xj ; q 2 )∞
1

q
i

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52